結果

問題 No.196 典型DP (1)
ユーザー バイトバイト
提出日時 2019-01-31 14:39:55
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 410 ms / 2,000 ms
コード長 31,928 bytes
コンパイル時間 3,293 ms
コンパイル使用メモリ 216,428 KB
実行使用メモリ 84,608 KB
最終ジャッジ日時 2024-11-15 17:04:36
合計ジャッジ時間 16,704 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

//
//T3
//使
#include <bits/stdc++.h>
using namespace std;
//@
struct initon {
initon() {
cin.tie(0);
ios::sync_with_stdio(false);
cout.setf(ios::fixed);
cout.precision(16);
};
} __initon;
//@
struct T {
int f, s, t;
T() { f = -1, s = -1, t = -1; }
T(int f, int s, int t) : f(f), s(s), t(t) {}
bool operator<(const T &r) const {
return f != r.f ? f < r.f : s != r.s ? s < r.s : t < r.t;
//return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t;
}
bool operator>(const T &r) const {
return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t;
//return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t;
}
int operator[](int i) {
assert(i < 3);
return i == 0 ? f : i == 1 ? s : t;
}
};
//@ ,
#define int long long
#define ll long long
#define double long double
#define ull unsigned long long
using dou = double;
using itn = int;
using str = string;
using bo= bool;
using P = pair<int, int>;
#define F first
#define S second
#define vec vector
#define con continue
#define bre break
#define brk break
#define is ==
#define rs resize
//
using vi = vector<int>;
#define vvi(a, b, c) vec<vi> a(b,vi(c))
using vb = vector<bool>;
#define vvb(a, b, c) vec<vb> a(b,vb(c))
using vs = vector<string>;
#define vvs(a, b, c) vec<vs> a(b,vs(c))
using vl = vector<ll>;
#define vvl(a, b, c) vec<vl> a(b,vl(c))
using vd = vector<double>;
#define vvd(a, b, c) vec<vd> a(b,vd(c))
using vc=vector<char>;
#define vvc(a, b, c) vec<vc> a(b,vc(c))
using vp = vector<P>;
#define vvp(a, b, c) vec<vp> a(b,vp(c))
using vt = vector<T>;
#define vvt(a, b, c) vec<vt> a(b,vt(c))
#define v3i(a, b, c, d) vector<vector<vi>> a(b, vector<vi>(c, vi(d)))
#define v3d(a, b, c, d) vector<vector<vd>> a(b, vector<vd>(c, vd(d)))
#define v3m(a, b, c, d) vector<vector<vm>> a(b, vector<vm>(c, vm(d)))
#define PQ priority_queue<ll, vector<ll>, greater<ll> >
using seti = set<int>;
#define uset unordered_set
#define mset multiset
#define umap unordered_map
#define mmap multimap
//
#define _overloadrep(_1, _2, _3, name, ...) name
# define _rep(i, n) for(int i = 0; i < n ; i++)
#define repi(i, m, n) for(int i = m; i < n ; i++)
#define rep(...) _overloadrep(__VA_ARGS__,repi,_rep,)(__VA_ARGS__)
#define _rer(i, n) for(int i = n; i >= 0 ; i--)
#define reri(i, m, n) for(int i = m; i >= n ; i--)
#define rer(...) _overloadrep(__VA_ARGS__,reri,_rer,)(__VA_ARGS__)
#define fora(a, b) for(auto&& a : b)
#define forg(gi, ve) if (ve.size())for (int gi = 0, f = ve[gi].from, t = ve[gi].to, c = ve[gi].cost; gi < ve.size(); gi++,f = ve[gi].from, t =
    ve[gi].to, c = ve[gi].cost)
//
#define k4 10101
#define k5 101010
#define k6 1010101
#define k7 10101010
const int inf = (int) 1e9 + 100;
const ll linf = (ll) 1e18 + 100;
const double eps = 1e-9;
const int y4[] = {-1, 1, 0, 0};
const int x4[] = {0, 0, -1, 1};
const int y8[] = {0, 1, 0, -1, -1, 1, 1, -1};
const int x8[] = {1, 0, -1, 0, 1, -1, 1, -1};
//
#define arsz(a) (sizeof(a)/sizeof(a[0]))
#define sz(a) (a.size())
#define mp make_pair
#define pb push_back
#define pf push_front
#define eb emplace_back
#define all(a) (a).begin(),(a).end()
#define rall(a) (a).rbegin(),(a).rend()
//@
//
// vector
namespace std_vector_bounds_checking {
using namespace std;
template<class T, class A = std::allocator<T>> struct vector : std::vector<T, A> {
using std::vector<T, A>::vector;
typename std::vector<T>::reference operator[](typename std::vector<T>::size_type n) {
return this->at(n);
}
};
}
namespace std {
template<> class hash<std::pair<signed, signed>> {
public:
size_t operator()(const std::pair<signed, signed> &x) const {
return hash<ll>()(((ll) x.first << 32) + x.second);
}
};
template<> class hash<std::pair<ll, ll>> {
public:
size_t operator()(const std::pair<ll, ll> &x) const {
return hash<ll>()(((ll) x.first << 32) + x.second);
}
};
}
template<typename T> istream &operator>>(istream &iss, vector<T> &vec) {
for (T &x: vec) iss >> x;
return iss;
}
template<typename T> ostream &operator<<(ostream &os, vector <T> &vec) {
for (int i = 0; i < vec.size(); i++)os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template<typename V, typename H> void resize(vector<V> &vec, const H head) { // template 0
vec.resize(head);
}
template<typename V, typename H, typename ... T> void resize(vector<V> &vec, const H &head, const T ... tail) {
vec.resize(head);
for (auto &v: vec) resize(v, tail...);
}
template<class T> T pop(set<T> &set) {
T res = *set.begin();
set.erase(set.find(res));
return res;
}
template<class T> T pop(mset<T> &set) {
T res = *set.begin();
set.erase(set.find(res));
return res;
}
template<class T> T popBack(set<T> &set) {
T res = *set.rbegin();
set.erase(set.find(res));
return res;
}
template<class T> T popBack(mset<T> &set) {
T res = *set.rbegin();
set.erase(set.find(res));
return res;
}
template<class T> inline void sort(vector<T> &a) { sort(a.begin(), a.end()); };
template<class T> inline void rsort(vector<T> &a) { sort(a.begin(), a.end(), greater<T>()); };
template<class T> inline void sort(vector<T> &a, int len) { sort(a.begin(), a.begin() + len); };
template<class T> inline void rsort(vector<T> &a, int len) { sort(a.begin(), a.begin() + len, greater<T>()); };
template<class T> inline void sort2(vector<vector<T>> &a) { for (int i = 0, n = a.size(); i < n; i++)sort(a[i]); }
template<class T> inline void rsort2(vector<vector<T>> &a) { for (int i = 0, n = a.size(); i < n; i++)rsort(a[i]); }
template<typename A, size_t N, typename T> void fill(A (&a)[N], const T &v) { rep(i, N)a[i] = v; }
template<typename A, size_t N, size_t O, typename T> void fill(A (&a)[N][O], const T &v) { rep(i, N)rep(j, O)a[i][j] = v; }
template<typename A, size_t N, size_t O, size_t P, typename T> void fill(A (&a)[N][O][P], const T &v) { rep(i, N)rep(j, O)rep(k, P)a[i][j][k] = v; }
template<typename A, size_t N, size_t O, size_t P, size_t Q, typename T> void fill(A (&a)[N][O][P][Q], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep
    (l, Q)a[i][j][k][l] = v; }
template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, typename T> void fill(A (&a)[N][O][P][Q][R], const T &v) { rep(i, N)rep(j, O
    )rep(k, P)rep(l, Q)rep(m, R)a[i][j][k][l][m] = v; }
template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, size_t S, typename T> void fill(A (&a)[N][O][P][Q][R][S], const T &v) { rep(i
    , N)rep(j, O)rep(k, P)rep(l, Q)rep(m, R)rep(n, S)a[i][j][k][l][m][n] = v; }
template<typename V, typename T> void fill(V &x, const T &val) { x = val; }
template<typename V, typename T> void fill(vector<V> &vect, const T &val) { for (auto &v: vect) fill(v, val); }
//@便
template<typename T = int> T in() {
T x;
cin >> x;
return (x);
}
string sin() { return in<string>(); }
double din() { return in<double>(); }
ll lin() { return in<ll>(); }
#define na(a, n) rep(i,n) cin >> a[i];
#define nad(a, n) rep(i,n) cin >> a[i], a[i]--;
#define na3(a, b, c, n) rep(i, n)cin >> a[i] >> b[i] >> c[i];
#define add2(a, b, n) rep(i, n)a.pb(in()),b.pb(in());
#define add2d(a, b, n) rep(i, n)a.pb(in()-1),b.pb(in()-1);
#define add3(a, b, c, n) rep(i, n)a.pb(in()),b.pb(in()),c.pb(in());
#define add3d(a, b, c, n) rep(i, n)a.pb(in()-1),b.pb(in()-1),c.pb(in());
#define na2(a, b, n) rep(i, n)cin >> a[i] >> b[i];
#define nt(a, h, w) rep(hi,h)rep(wi,w) cin >> a[hi][wi];
#define ntd(a, h, w) rep(hi,h)rep(wi,w) cin >> a[hi][wi], a[hi][wi]--;
#define ntp(a, h, w) fill(a,'#');rep(hi,1,h+1)rep(wi,1,w+1) cin >> a[hi][wi];
#define addn(a, n) a.resize(n);na(a,n);
#define addnd(a, n) a.resize(n);na(a,n);rep(i,n)a[i]--;
//便
template<class T> void out(T x) { typeid(x) == typeid(double) ? cout << fixed << setprecision(10) << x << endl : cout << x << endl; }
//
#define debug(x) cerr << x << " " << "(L:" << __LINE__ << ")" << '\n';
//使
class UnionFind {
public:
vi par, rank, sizes;
int n, trees;
UnionFind(int n) : n(n), trees(n) {
par.resize(n), rank.resize(n), sizes.resize(n);
rep(i, n)par[i] = i, sizes[i] = 1;
}
int root(int x) {
if (par[x] == x)return x;
else return par[x] = root(par[x]);
}
int find(int x) { return root(x); }
void unite(int x, int y) {
x = root(x);
y = root(y);
if (x == y)return;
if (rank[x] < rank[y])swap(x, y);
trees--;
par[y] = x;
sizes[x] += sizes[y];
if (rank[x] == rank[y])rank[x]++;
}
bool same(int x, int y) { return root(x) == root(y); }
int size(int x) { return sizes[root(x)]; }
// umap
vec<vi> sets() {
vec<vi> res(trees);
umap<int, vi> map;
rep(i, n) map[root(i)].push_back(i);
int i = 0;
for (auto &&p:map) {
int r = p.F;
res[i].push_back(r);
for (auto &&v:p.S) {
if (r == v)continue;
res[i].push_back(v);
}
i++;
}
return res;
}
};
//MOD
ll MOD = (int) 1e9 + 7;
int mpow(int v, ll a) {
ll x = v, n = a, res = 1;
while (n) {
if (n & 1)res = (res * x) % MOD;
x = (x * x) % MOD;
n >>= 1;
}
return res;
}
class mint {
private:
ll v;
public:
static ll mod(ll a) { return (a % MOD + MOD) % MOD; }
mint(ll a = 0) { this->v = mod(a); };
mint(const mint &a) { v = a.v; }
mint operator+(const mint &a) { return mint(v + a.v); }
mint operator+(const ll a) { return mint(v + a % MOD); }
mint operator+(const signed a) { return mint(v + a % MOD); }
friend mint operator+(const ll a, const mint &b) { return mint(a % MOD + b.v); }
void operator+=(const mint &a) { v = (v + a.v) % MOD; }
void operator+=(const ll a) { v = mod(v + a % MOD); }
void operator+=(const signed a) { v = mod(v + a % MOD); }
friend void operator+=(ll &a, const mint &b) { a = mod(a % MOD + b.v); }
mint operator-(const mint &a) { return mint(v - a.v); }
mint operator-(const ll a) { return mint(v - a % MOD); }
mint operator-(const signed a) { return mint(v - a % MOD); }
friend mint operator-(const ll a, const mint &b) { return mint(a % MOD - b.v); }
void operator-=(const mint &a) { v = mod(v - a.v); }
void operator-=(const ll a) { v = mod(v - a % MOD); }
void operator-=(const signed a) { v = mod(v - a % MOD); }
friend void operator-=(ll &a, const mint &b) { a = mod(a % MOD - b.v); }
mint operator*(const mint &a) { return mint(v * a.v); }
mint operator*(const ll a) { return mint(v * (a % MOD)); }
mint operator*(const signed a) { return mint(v * (a % MOD)); }
friend mint operator*(const ll a, const mint &b) { return mint(a % MOD * b.v); }
void operator*=(const mint &a) { v = (v * a.v) % MOD; }
void operator*=(const ll a) { v = mod(v * (a % MOD)); }
void operator*=(const signed a) { v = mod(v * (a % MOD)); }
friend void operator*=(ll &a, const mint &b) { a = mod(a % MOD * b.v); }
mint operator/(const mint &a);
mint operator/(const ll a);
mint operator/(const signed a);
friend mint operator/(const ll a, const mint &b);
void operator/=(const mint &a);
void operator/=(const ll a);
void operator/=(const signed a);
friend void operator/=(ll &a, const mint &b);
mint operator^(const mint &a) { return mpow(v, a.v); };
mint operator^(const ll a) { return mpow(v, a); };
mint operator^(const signed a) { return mpow(v, a); };
friend mint operator^(const ll a, const mint &b) { return mpow(a, b.v); };
void operator^=(const mint &a) { v = mpow(v, a.v); }
void operator^=(const ll a) { v = mpow(v, a); }
void operator^=(const signed a) { v = mpow(v, a); }
//
mint operator+() { return *this; }
mint operator++() {
v++;
return *this;
}
mint operator++(signed d) {
mint res = *this;
v++;
return res;
}
mint operator-() { return operator*(-1); }
mint operator--() {
v++;
return *this;
}
void operator--(signed d) {
mint res = *this;
v++;
}
bool operator==(mint &a) { return v == a.v; }
bool operator==(signed a) { return v == a; }
friend bool operator==(signed a, mint &b) { return a == b.v; }
bool operator!=(mint &a) { return v != a.v; }
bool operator!=(signed a) { return v != a; }
friend bool operator!=(signed a, mint &b) { return a != b.v; }
operator int() { return v; }
};
const int setModMax = 510000;
mint fac[setModMax], finv[setModMax], inv[setModMax];
void setMod() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < setModMax; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
mint minv(ll a) {
if (fac[0] == 0)setMod();
if (a < setModMax) return inv[a];
a %= MOD;
ll b = MOD, x = 1, y = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
x -= t * y;
swap(x, y);
}
return (x % MOD + MOD) % MOD;
}
mint mint::operator/(const mint &a) { return mint(v * minv(a.v)); }
mint mint::operator/(const ll a) { return mint(v * minv(a)); }
mint mint::operator/(const signed a) { return mint(v * minv(a)); }
mint operator/(const ll a, const mint &b) { return mint(a % MOD * minv(b.v)); }
void mint::operator/=(const mint &a) { v = (v * minv(a.v)) % MOD; }
void mint::operator/=(const ll a) { v = mod(v * minv(a)); }
void mint::operator/=(const signed a) { v = mod(v * minv(a)); }
void operator/=(ll &a, const mint &b) { a = mint::mod(a % MOD * minv(b.v)); }
using vm=vector<mint>;
#define vvm(a, b, c) vec<vm> a(b,vm(c))
bool isPrime[4010101];
vi primes;
void setPrime() {
fill(isPrime, true);
int len = sizeof(isPrime) / sizeof(isPrime[0]);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i <= sqrt(len) + 5; ++i) {
if (!isPrime[i])continue;
for (int j = 2; i * j < len; ++j) {
isPrime[i * j] = false;
}
}
rep(i, len)if (isPrime[i])primes.pb(i);
}
mint com(ll n, ll r) {
if (n < r || n < 0 || r < 0)return 0;
if (fac[0] == 0)setMod();
return fac[n] * (finv[r] * finv[n - r] % MOD) % MOD;
}
//便
void ole() {
string a = "a";
rep(i, 30)a += a;
rep(i, 1 << 17)cout << a << endl;
cout << "OLE " << endl;
exit(0);
}
void tle() { while (inf)cout << inf << endl; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
bool equal(double a, double b) { return fabs(a - b) < eps; }
ll reverse(ll a) {
ll res = 0;
while (a) {
res *= 10;
res += a % 10;
a /= 10;
}
return res;
}
ll ceil(ll a, ll b) {
if (b == 0) {
ole();
return -1;
} else return (a + b - 1) / b;
}
ll sqrt(ll a) {
if (a < 0)ole();
ll res = (ll) std::sqrt(a);
while (res * res < a)res++;
return res;
}
double log(double e, double x) { return log(x) / log(e); }
ll sig(ll t) { return (1 + t) * t / 2; }
ll sig(ll s, ll t) { return (s + t) * (t - s + 1) / 2; }
vi divisors(int v) {
vi res;
for (int i = 1; i <= sqrt(v); ++i) {
if (v % i == 0) {
res.pb(i);
if (i != v / i)res.pb(v / i);
}
}
return res;
}
vi factorization(int v) {
int tv = v;
vi res;
if (!isPrime[2])setPrime();
for (auto &&p :primes) {
if (v % p == 0)res.push_back(p);
while (v % p == 0) {
v /= p;
}
if (v == 1 || p * p > tv)break;
}
if (v > 1)res.pb(v);
return res;
}
unordered_map<int, int> factorizationMap(int v) {
int tv = v;
unordered_map<int, int> res;
if (!isPrime[2])setPrime();
for (auto &&p :primes) {
while (v % p == 0) {
res[p]++;
v /= p;
}
if (v == 1 || p * p > tv)break;
}
if (v > 1)res[v]++;
return res;
}
int get(int a, int keta) { return (a / (int) pow(10, keta)) % 10; }
int keta(int v) {
int cou = 0;
while (v) { cou++, v %= 10; }
return cou;
}
template<class T> void imo(vector<T> &v) {
int n = v.size();
rep(i, n - 1)v[i + 1] += v[i];
}
//
template<class T, class U> vector<U> keys(map<T, U> a) {
vector<U> res;
for (auto &&k :a)res.pb(k.F);
return res;
}
template<class T, class U> vector<U> keys(umap<T, U> a) {
vector<U> res;
for (auto &&k :a)res.pb(k.F);
return res;
}
template<class T, class U> vector<T> values(map<T, U> a) {
vector<T> res;
for (auto &&k :a)res.pb(k.S);
return res;
}
template<class T, class U> vector<T> values(umap<T, U> a) {
vector<T> res;
for (auto &&k :a)res.pb(k.S);
return res;
}
vi list(int a) {
vi res;
while (a) {
res.insert(res.begin(), a % 10);
a /= 10;
}
return res;
}
template<class T, class U> bool chmax(T &a, const U &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template<class T, class U> bool chmin(T &a, const U &b) {
if (b < a) {
a = b;
return true;
}
return false;
}
template<class T> T min(T a, signed b) {
return a < b ? a : b;
}
template<class T> T max(T a, signed b) {
return a < b ? b : a;
}
template<class T> T min(vector<T> a) {
return *min_element(all(a));
}
template<class T> T max(vector<T> a) {
return *max_element(all(a));
}
template<class T> T min(T a[]) {
T res = a[0];
rep(i, arsz(a))chmin(res, a[i]);
return res;
}
template<class T> T max(T a[]) {
T res = a[0];
rep(i, arsz(a))chmax(res, a[i]);
return res;
}
template<class T> T sum(vector<T> &v, int len = -1) {
if (len == -1)len = v.size();
T res = 0;
chmin(len, v.size());
rep(i, len)res += v[i];
return res;
}
template<class T> T sum(vector<vector<T>> &v, int h = -1, int w = -1) {
if (h == -1)h = v.size();
if (w == -1)w = v[0].size();
T res = 0;
chmin(h, v.size());
chmin(w, v[0].size());
rep(i, h)rep(j, w)res += v[i][j];
return res;
}
P sump(vp &v, int len = -1) {
if (len == -1)len = v.size();
P res = {0, 0};
chmin(len, v.size());
rep(i, len) {
res.F += v[i].F;
res.S += v[i].S;
}
return res;
}
///001
template<class T> T mul(vector<T> &v, int len = -1) {
if (len == -1)len = v.size();
T res = 1;
chmin(len, v.size());
rep(i, len)res *= v[i];
return res;
}
void clear(PQ &q) { while (q.size())q.pop(); }
template<class T> void clear(queue<T> &q) { while (q.size())q.pop(); }
template<class T> T *negarr(int size) {
T *body = (T *) malloc((size * 2 + 1) * sizeof(T));
return body + size;
}
template<class T> T *negarr2(int h, int w) {
double **dummy1 = new double *[2 * h + 1];
double *dummy2 = new double[(2 * h + 1) * (2 * w + 1)];
dummy1[0] = dummy2 + w;
for (int i = 1; i <= 2 * h + 1; i++) {
dummy1[i] = dummy1[i - 1] + 2 * w + 1;
}
double **a = dummy1 + h;
}
template<class T> vector<T> ruiv(vector<T> &a) {
vector<T> res(a.size() + 1);
rep(i, a.size())res[i + 1] = res[i] + a[i];
return res;
}
template<class T> vector<T> ruim(vector<T> &a) {
vector<T> res(a.size() + 1, 1);
rep(i, a.size())res[i + 1] = res[i] * a[i];
return res;
}
// (-1 n-1]
template<class T> T *rrui(vector<T> &a) {
int len = a.size();
T *body = (T *) malloc((len + 1) * sizeof(T));
T *res = body + 1;
rer(i, len - 1)res[i - 1] = res[i] + a[i];
return res;
}
//
template<class T> T *rruim(vector<T> &a) {
int len = a.size();
T *body = (T *) malloc((len + 1) * sizeof(T));
T *res = body + 1;
res[len - 1] = 1;
rer(i, len - 1)res[i - 1] = res[i] * a[i];
return res;
}
template<class T> void plus(vector<T> &a, T v = 1) { for (auto &&u :a)u += v; }
template<class T> void minu(vector<T> &a, T v = 1) { for (auto &&u :a)u -= v; }
template<class T> void minus(vector<T> &a, T v = 1) { for (auto &&u :a)u -= v; }
inline bool inside(int y, int x, int H, int W) { return y >= 0 && x >= 0 && y < H && x < W; }
ll u(ll a) { return a < 0 ? 0 : a; }
#define MIN(a) numeric_limits<a>::min()
#define MAX(a) numeric_limits<a>::max()
template<class T> T min(vector<vector<T>> &a) {
T res = MAX(T);
rep(i, a.size())chmin(res, *min_element(all(a[i])));
return res;
}
template<class T> T max(vector<vector<T>> &a) {
T res = MIN(T);
rep(i, a.size())chmax(res, *max_element(all(a[i])));
return res;
}
bool bget(ll m, int keta) { return (m >> keta) & 1; }
int bget(ll m, int keta, int sinsuu) {
m /= (ll) pow(sinsuu, keta);
return m % sinsuu;
}
inline ll bit(int n) { return (1LL << (n)); }
inline ll bit(int n, int sinsuu) { return (ll) pow(sinsuu, n); }
int bcou(ll m) { return __builtin_popcount(m & 0xFFFFFFFF) + __builtin_popcount(m >> 32); }
//0
ll nextComb(ll &mask, int n, int r) {
if (!mask)return mask = (1LL << r) - 1;
ll x = mask & -mask; //1
ll y = mask + x; //1
ll res = ((mask & ~y) / x >> 1) | y;
if (bget(res, n))return mask = 0;
else return mask = res;
}
//nrvector
vl bitCombList(int n, int r) {
vl res;
int m = 0;
while (nextComb(m, n, r)) {
res.pb(m);
}
return res;
}
//
int altoiaZ(char c) {
if ('A' <= c && c <= 'Z')return c - 'A';
return c - 'a' + 26;
}
char itoalaZ(int i) {
if (i < 26)return 'A' + i;
return 'a' + i - 26;
}
//aA0
int altoi(char c) {
if ('A' <= c && c <= 'Z')return c - 'A';
return c - 'a';
}
char itoal(int i) {
return 'a' + i;
}
int ctoi(char c) { return c - '0'; }
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
void compress(vi &a) {
vi b;
int len = a.size();
for (int i = 0; i < len; ++i) {
b.push_back(a[i]);
}
sort(b);
UNIQUE(b);
for (int i = 0; i < len; ++i) {
a[i] = lower_bound(all(b), a[i]) - b.begin();
}
}
void compress(int a[], int len) {
vi b;
for (int i = 0; i < len; ++i) {
b.push_back(a[i]);
}
sort(b);
UNIQUE(b);
for (int i = 0; i < len; ++i) {
a[i] = lower_bound(all(b), a[i]) - b.begin();
}
}
//
#define binarySearch(a, v) (binary_search(all(a),v))
#define lowerIndex(a, v) (lower_bound(all(a),v)-a.begin())
#define lowerBound(a, v) (*lower_bound(all(a),v))
#define upperIndex(a, v) (upper_bound(all(a),v)-a.begin())
#define upperBound(a, v) (*upper_bound(all(a),v))
#define ans(a) cout<<a<<endl;continue;
#define poll(a) q.front();q.pop()
#define dpoll(a) q.front();q.pop_front()
#define pollLast(a) q.back();q.pop_back()
#define pollBack(a) q.back();q.pop_back()
template<class T> inline void fin(T s) { cout << s << endl, exit(0); }
template<class T> struct edge {
int from, to;
T cost;
int id;
int type;
edge(int f, int t, T c = 1, int id = -1, int ty = -1) : from(f), to(t), cost(c), id(id), type(ty) {}
bool operator<(const edge &b) const { return cost < b.cost; }
bool operator>(const edge &b) const { return cost > b.cost; }
};
template<typename T> class graph {
protected:
vector<bool> _used;
public :
vector<vector<edge<T>>> g;
vector<edge<T>> edges;
int n, root = -1;
graph(int n) : n(n) { g.resize(n), _used.resize(n); }
void clear() { g.clear(), edges.clear(); }
void resize(int n) {
this->n = n;
g.resize(n);
_used.resize(n);
}
int size() { return g.size(); }
bool isleaf(int v) {
assert(root != -1);
return g[v].size() == 1 && g[v][0].from != root;
}
vector<edge<T> > &operator[](int i) { return g[i]; }
virtual void add(int from, int to, T cost, int ty) = 0;
virtual bool used(edge<T> &e) = 0;
virtual bool used(int id) = 0;
virtual void del(edge<T> &e) = 0;
virtual void del(int id) = 0;
};
template<class T=int> class undigraph : public graph<T> {
public:
using graph<T>::g;
using graph<T>::n;
using graph<T>::edges;
using graph<T>::_used;
undigraph(int n) : graph<T>(n) {
}
void add(int f, int t, T cost = 1, int ty = -1) {
if (!(0 <= f && f < n && 0 <= t && t < n))ole();
int id = edges.size();
g[f].emplace_back(f, t, cost, id, ty);
g[t].emplace_back(t, f, cost, id + 1, ty);
edges.emplace_back(f, t, cost, id, ty);
edges.emplace_back(t, f, cost, id + 1, ty);
}
void add(edge<T> &e) {
int f = e.from, t = e.to, ty = e.type;
T cost = e.cost;
add(f, t, cost, ty);
}
bool used(edge<T> &e) { return _used[e.id]; }
bool used(int id) { return _used[id]; }
void del(edge<T> &e) { _used[e.id] = _used[e.id ^ 1] = 1; }
void del(int id) { _used[id] = _used[id ^ 1] = 1; }
};
template<typename T =ll> class digraph : public graph<T> {
public:
using graph<T>::g;
using graph<T>::n;
using graph<T>::edges;
using graph<T>::_used;
digraph(int n) : graph<T>(n) {}
void add(int f, int t, T cost = 1, int ty = -1) {
if (!(0 <= f && f < n && 0 <= t && t < n))ole();
int id = edges.size();
g[f].emplace_back(f, t, cost, ty, id);
edges.emplace_back(f, t, cost, ty, id);
}
bool used(edge<T> &e) { return _used[e.id]; }
bool used(int id) { return _used[id]; }
void del(edge<T> &e) { _used[e.id] = _used[e.id ^ 1] = 1; }
void del(int id) { _used[id] = _used[id ^ 1] = 1; }
};
template<class T> bool nibu(const graph<T> &g) {
UnionFind uf(g.n * 2);
for (auto &&e :g.edges)uf.unite(e.f, e.t + g.n), uf.unite(e.f + g.n, e.t);
return !uf.same(0, g.n);
}
template<class T> vector<T> &dijkstra(const graph<T> &g, int s) {
if (!(0 <= s && s < g.n))ole();
T initValue = MAX(T);
vector<T> dis(g.n, initValue);
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> q;
dis[s] = 0;
q.emplace(0, s);
while (q.size()) {
T nowc = q.top().F;
int i = q.top().S;
q.pop();
if (dis[i] != nowc)continue;
for (auto &&e : g.g[i]) {
int to = e.to;
T cost = nowc + e.cost;
if (dis[to] > cost) {
dis[to] = cost;
q.emplace(dis[to], to);
}
}
}
//-1
for (auto &&d :dis) if (d == initValue)d = -1;
return dis;
}
//
template<typename T> void remove(vector<T> &v, unsigned int i) { v.erase(v.begin() + i); }
template<typename T> void remove(vector<T> &v, unsigned int s, unsigned int e) {
v.erase(v.begin() + s, v.begin() + e);
}
template<typename T> void removen(vector<T> &v, unsigned int s, unsigned int n) {
v.erase(v.begin() + s, v.begin() + s + n);
}
template<typename T> void erase(vector<T> &v, unsigned int i) { v.erase(v.begin() + i); }
template<typename T> void erase(vector<T> &v, unsigned int s, unsigned int e) {
v.erase(v.begin() + s, v.begin() + e);
}
template<typename T> void erasen(vector<T> &v, unsigned int s, unsigned int n) {
v.erase(v.begin() + s, v.begin() + s + n);
}
template<typename T> void insert(vector<T> &v, unsigned int i, T t) { v.insert(v.begin() + i, t); }
template<typename T> void insert(vector<T> &v, unsigned int i, vector<T> list) {
for (auto &&va :list)v.insert(v.begin() + i++, va);
}
template<typename T> void insert(vector<T> &v, unsigned int i, initializer_list<T> list) {
for (auto &&va :list)v.insert(v.begin() + i++, va);
}
template<typename T> void insert(set<T> &v, vector<T> list) {
for (auto &&va :list)v.insert(va);
}
template<typename T> void insert(set<T> &v, initializer_list<T> list) {
for (auto &&va :list)v.insert(va);
}
int mod(int a, int m) {
return (a % m + m) % m;
}
ll ma = numeric_limits<ll>::min();
ll mi = numeric_limits<ll>::max();
//true
bool topo(vi &res, digraph<int> &g) {
int n = g.g.size();
vi nyu(n);
rep(i, n)for (auto &&e :g[i])nyu[e.to]++;
queue<int> st;
rep(i, n)if (nyu[i] == 0)st.push(i);
while (st.size()) {
int v = st.front();
st.pop();
res.pb(v);
fora(e, g[v]) if (--nyu[e.to] == 0)st.push(e.to);
}
return res.size() == n;
}
//
bool topos(vi &res, digraph<int> &g) {
int n = g.g.size();
vi nyu(n);
rep(i, n)for (auto &&e :g[i])nyu[e.to]++;
//
priority_queue<int, vector<int>, greater<int> > q;
rep(i, n)if (nyu[i] == 0)q.push(i);
while (q.size()) {
int i = q.top();
q.pop();
res.pb(i);
fora(e, g[i])if (--nyu[e.to] == 0)q.push(e.to);
}
return res.size() == n;
}
vector<string> split(const string a, const char deli) {
string b = a + deli;
int l = 0, r = 0, n = b.size();
vector<string> res;
rep(i, n) {
if (b[i] == deli) {
r = i;
if (l < r)res.push_back(b.substr(l, r - l));
l = i + 1;
}
}
return res;
}
vector<string> split(const string a, const string deli) {
string b = a + deli;
int l = 0, r = 0, n = b.size(), dn = deli.size();
vector<string> res;
rep(i, n) {
if (i + dn <= n && b.substr(i, i + dn) == deli) {
r = i;
if (l < r)res.push_back(b.substr(l, r - l));
i += dn - 1;
l = i + 1;
}
}
return res;
}
int n, k, m, h, w, x, y, q;
int cou;
vi a, b, c;
undigraph<> g(2 * k5);
int dp[2020][2020][2];//
mint sub[2020][2];//
int ns[2020];
void ds(int i, int p) {
forg(gi, g[i])if (t != p)ds(t, i);
int sum = 1;
dp[i][0][0] = 1;
dp[i][1][1] = 1;
if (g[i].size())
forg(gi, g[i]) {
if (t == p)continue;
rep(ni, sum + 1) {
rep(nt, ns[t] + 1) {
rep(bi, 2) {
rep(bt, 2) {
if (dp[i][ni][bi] < 0 || dp[t][nt][bt] < 0)continue;
//
if (bi && !bt)continue;
sub[ni + nt][bi] += dp[i][ni][bi] * dp[t][nt][bt];
}
}
}
}
sum += ns[t];
rep(s, sum + 1)rep(b, 2) {
dp[i][s][b] = sub[s][b];
sub[s][b] = 0;
}
}
ns[i] = sum;
}
signed main() {
cin >> n >> k;
rep(i, n - 1) {
int f, s;
cin >> f >> s;
g.add(f, s);
}
fill(dp, -1);
fill(sub, 0);
setMod();
ds(0, -1);
cout << dp[0][k][0] + dp[0][k][1] << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0