結果
問題 | No.788 トラックの移動 |
ユーザー | もりを |
提出日時 | 2019-02-08 22:24:27 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,480 bytes |
コンパイル時間 | 1,723 ms |
コンパイル使用メモリ | 178,740 KB |
実行使用メモリ | 48,440 KB |
最終ジャッジ日時 | 2024-07-01 11:37:19 |
合計ジャッジ時間 | 8,303 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
ソースコード
#include <bits/stdc++.h> using namespace std; //#define int long long typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> vi; typedef vector<ll> vl; typedef vector<string> vst; typedef vector<bool> vb; typedef vector<ld> vld; typedef vector<pii> vpii; typedef vector<pll> vpll; typedef vector<vector<int> > vvi; const int INF = (0x7FFFFFFFL); const ll INFF = (0x7FFFFFFFFFFFFFFFL); const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const int MOD = 1e9 + 7; const int MODD = 998244353; const string alphabet = "abcdefghijklmnopqrstuvwxyz"; const double PI = acos(-1.0); const double EPS = 1e-9; const string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; int dx[9] = { 1, 0, -1, 0, 1, -1, -1, 1, 0 }; int dy[9] = { 0, 1, 0, -1, -1, -1, 1, 1, 0 }; #define ln '\n' #define scnaf scanf #define sacnf scanf #define sancf scanf #define SS(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t){cin >> t;}template<typename First, typename...Rest> void MACRO_VAR_Scan(First& first, Rest&...rest){cin >> first;MACRO_VAR_Scan(rest...);} #define SV(type,c,n) vector<type> c(n);for(auto& i:c)cin >> i; #define SVV(type,c,n,m) vector<vector<type>> c(n,vector<type>(m));for(auto& r:c)for(auto& i:r)cin >> i; template<class T>ostream &operator<<(ostream &o,const vector<T>&j){o<<"{";for(int i=0;i<(int)j.size();++i)o<<(i>0?", ":"")<<j[i];o<<"}";return o;} template<class T,class U>ostream &operator<<(ostream &o,const pair<T,U>&j){o<<"{"<<j.first<<", "<<j.second<<"}";return o;} template<class T,class U>ostream &operator<<(ostream &o,const map<T,U>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;} template<class T>ostream &operator<<(ostream &o,const set<T>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;} inline int print(void){cout << endl; return 0;} template<class Head> int print(Head&& head){cout << head;print();return 0;} template<class Head,class... Tail> int print(Head&& head,Tail&&... tail){cout<<head<<" ";print(forward<Tail>(tail)...);return 0;} inline int debug(void){cerr << endl; return 0;} template<class Head> int debug(Head&& head){cerr << head;debug();return 0;} template<class Head,class... Tail> int debug(Head&& head,Tail&&... tail){cerr<<head<<" ";debug(forward<Tail>(tail)...);return 0;} template<typename T> void PA(T &a){int ASIZE=sizeof(a)/sizeof(a[0]);for(int ii=0;ii<ASIZE;++ii){cout<<a[ii]<<" \n"[ii==ASIZE-1];}} template<typename T> void PV(T &v){int VSIZE=v.size();for(int ii=0;ii<VSIZE;++ii){cout<<v[ii]<<" \n"[ii==VSIZE-1];}} #define ER(x) cerr << #x << " = " << (x) << endl; #define ERV(v) {cerr << #v << " : ";for(const auto& xxx : v){cerr << xxx << " ";}cerr << "\n";} inline int YES(bool x){cout<<((x)?"YES":"NO")<<endl;return 0;} inline int Yes(bool x){cout<<((x)?"Yes":"No")<<endl;return 0;} inline int yes(bool x){cout<<((x)?"yes":"no")<<endl;return 0;} inline int yES(bool x){cout<<((x)?"yES":"nO")<<endl;return 0;} inline int Yay(bool x){cout<<((x)?"Yay!":":(")<<endl;return 0;} template<typename A,typename B> void sankou(bool x,A a,B b){cout<<((x)?(a):(b))<<endl;} #define _overload3(_1,_2,_3,name,...) name #define _REP(i,n) REPI(i,0,n) #define REPI(i,a,b) for(ll i=ll(a);i<ll(b);++i) #define REP(...) _overload3(__VA_ARGS__,REPI,_REP,)(__VA_ARGS__) #define _RREP(i,n) RREPI(i,n,0) #define RREPI(i,a,b) for(ll i=ll(a);i>=ll(b);--i) #define RREP(...) _overload3(__VA_ARGS__,RREPI,_RREP,)(__VA_ARGS__) #define EACH(e,v) for(auto& e : v) #define PERM(v) sort((v).begin(),(v).end());for(bool c##p=1;c##p;c##p=next_permutation((v).begin(),(v).end())) #define ADD(a,b) a=(a+ll(b))%MOD #define MUL(a,b) a=(a*ll(b))%MOD inline ll MOP(ll x,ll n,ll m=MOD){ll r=1;while(n>0){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;} inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}inline ll lcm(ll a,ll b){return a*b/gcd(a,b);}inline ll POW(ll a,ll b){ll c=1ll;do{if(b&1)c*=1ll*a;a*=1ll*a;}while(b>>=1);return c;} template<typename T,typename A,typename B> inline bool between(T x,A a,B b) {return ((a<=x)&&(x<b));}template<class T> inline T sqr(T x){return x*x;} template<typename A,typename B> inline bool chmax(A &a,const B &b){if(a<b){a=b;return 1;}return 0;} template<typename A,typename B> inline bool chmin(A &a,const B &b){if(a>b){a=b;return 1;}return 0;} #define tmax(x,y,z) max((x),max((y),(z))) #define tmin(x,y,z) min((x),min((y),(z))) #define PB push_back #define MP make_pair #define MT make_tuple #define all(v) (v).begin(),(v).end() #define rall(v) (v).rbegin(),(v).rend() #define SORT(v) sort((v).begin(),(v).end()) #define RSORT(v) sort((v).rbegin(),(v).rend()) #define EXIST(s,e) (find((s).begin(),(s).end(),(e))!=(s).end()) #define EXISTST(s,c) (((s).find(c))!=string::npos) #define POSL(x,val) (lower_bound(x.begin(),x.end(),val)-x.begin()) #define POSU(x,val) (upper_bound(x.begin(),x.end(),val)-x.begin()) #define GEQ(x,val) (int)(x).size() - POSL((x),(val)) #define GREATER(x,val) (int)(x).size() - POSU((x),(val)) #define LEQ(x,val) POSU((x),(val)) #define LESS(x,val) POSL((x),(val)) #define SZV(a) int((a).size()) #define SZA(a) sizeof(a)/sizeof(a[0]) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) #define MEMINF(a) memset(a,0x3f,sizeof(a)) #define FILL(a,b) memset(a,b,sizeof(a)) #define UNIQUE(v) sort((v).begin(),(v).end());(v).erase(unique((v).begin(),(v).end()),(v).end()) struct abracadabra{ abracadabra(){ cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); cerr << fixed << setprecision(5); }; } ABRACADABRA; //---------------8<---------------8<---------------8<---------------8<---------------// /* ・グラフ > Dijkstra > BellmanFord > WarshallFloyd > Kruskal [応用] 単一終点最短路問題は, すべての有向辺を逆向きに張り替えると, 単一始点最短路問題に帰着できる. [使用例] Graph<int> g(N); // 頂点数N, 重さの型がintのグラフを宣言 add_edge(g,a,b,c); // グラフgに, aからbへの重さcの無向辺を追加 add_arc(g,a,b,c); // グラフgに, aからbへの重さcの有向辺を追加 add_to_edges(edges,a,b,c); // 辺集合edgesに, 始点a, 終点b, 重さcの辺を追加 */ template<typename T> struct Edge { int from, to; T weight; Edge() : from(0), to(0), weight(0) {} Edge(int f, int t, T w) : from(f), to(t), weight(w) {} }; template<typename T> using Edges = vector< Edge< T > >; template<typename T> using Graph = vector< Edges< T > >; template<typename T> void add_edge(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from,to,w); g[to].emplace_back(to,from,w); } template<typename T> void add_arc(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from,to,w); } template<typename T> void add_to_edges(Edges< T > &e, int from, int to, T w = 1) { e.emplace_back(from,to,w); } /* ・ワーシャルフロイド法 > O(V^3) [V:頂点数] (WarshallFloyd()) > O(V^2) : 辺の追加 (add_edge_to_matrix()) [備考] 全点間最短路を求めるアルゴリズム 負閉路が存在しているかの検出も可能 -> ある頂点vからv自身への最短路が負なが負閉路が存在 [注意] 結果を足し合わせる際, INFの大きさに注意 [使用例] auto wf = WarshallFloyd(g); // グラフgにおける全点間最短路 add_edge_to_matrix(wf,a,b,c); // 隣接行列wfに, 始点a, 終点b, 重さcの辺を追加して, wfを更新 */ template<typename T> using Matrix = vector< vector< T > >; template<typename T> Matrix< T > WarshallFloyd(Graph< T > &g) { const auto INF = numeric_limits< T >::max()/10; int vertex = g.size(); Matrix< T > dist(vertex, vector< T >(vertex, INF)); for (int i = 0; i < vertex; ++i) dist[i][i] = 0; for (int i = 0; i < vertex; ++i) { for (auto &e : g[i]) { dist[e.from][e.to] = min(dist[e.from][e.to], e.weight); } } for (int k = 0; k < vertex; ++k) { for (int i = 0; i < vertex; ++i) { for (int j = 0; j < vertex; ++j) { if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } return dist; } template<typename T> void add_edge_to_matrix(Matrix< T > &mat, int from, int to, T weight = 1) { const auto INF = numeric_limits< T >::max()/10; mat[from][to] = mat[to][from] = min(mat[from][to], weight); int vertex = mat.size(); for (int k : {from, to}) { for (int i = 0; i < vertex; ++i) { for (int j = 0; j < vertex; ++j) { if (mat[i][k] != INF && mat[k][j] != INF) { mat[i][j] = min(mat[i][j], mat[i][k] + mat[k][j]); } } } } } signed main() { SS(int, N, M, L); --L; SV(int, T, N); Graph<ll> g(N); REP(i, M) { SS(ll,a,b,c); --a, --b; add_edge(g,a,b,c); } auto wf = WarshallFloyd(g); ll res = INFF; REP(fin, N) { ll tmp = 0; REP(car, N) { tmp += wf[car][fin] * T[car] * 2; } if (T[L] != 0) { tmp -= wf[L][fin]; } else { ll mx = -INFF; ll cr = -1; REP(car, N) { if (T[car] == 0) continue; if (chmax(mx, wf[car][fin] - wf[L][car])) cr = car; } tmp -= wf[cr][fin] - wf[L][cr]; } chmin(res, tmp); } print(res); }