結果
| 問題 |
No.788 トラックの移動
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-02-08 22:24:27 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,480 bytes |
| コンパイル時間 | 1,723 ms |
| コンパイル使用メモリ | 178,740 KB |
| 実行使用メモリ | 48,440 KB |
| 最終ジャッジ日時 | 2024-07-01 11:37:19 |
| 合計ジャッジ時間 | 8,303 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | TLE * 1 -- * 13 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
//#define int long long
typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> vi; typedef vector<ll> vl;
typedef vector<string> vst; typedef vector<bool> vb; typedef vector<ld> vld; typedef vector<pii> vpii; typedef vector<pll> vpll; typedef vector<vector<int> > vvi;
const int INF = (0x7FFFFFFFL); const ll INFF = (0x7FFFFFFFFFFFFFFFL); const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const int MOD = 1e9 + 7; const int MODD = 998244353; const string alphabet = "abcdefghijklmnopqrstuvwxyz";
const double PI = acos(-1.0); const double EPS = 1e-9; const string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
int dx[9] = { 1, 0, -1, 0, 1, -1, -1, 1, 0 };
int dy[9] = { 0, 1, 0, -1, -1, -1, 1, 1, 0 };
#define ln '\n'
#define scnaf scanf
#define sacnf scanf
#define sancf scanf
#define SS(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__);
template<typename T> void MACRO_VAR_Scan(T& t){cin >> t;}template<typename First, typename...Rest> void MACRO_VAR_Scan(First& first, Rest&...rest){cin >> first;MACRO_VAR_Scan(rest...);}
#define SV(type,c,n) vector<type> c(n);for(auto& i:c)cin >> i;
#define SVV(type,c,n,m) vector<vector<type>> c(n,vector<type>(m));for(auto& r:c)for(auto& i:r)cin >> i;
template<class T>ostream &operator<<(ostream &o,const vector<T>&j){o<<"{";for(int i=0;i<(int)j.size();++i)o<<(i>0?", ":"")<<j[i];o<<"}";return o;}
template<class T,class U>ostream &operator<<(ostream &o,const pair<T,U>&j){o<<"{"<<j.first<<", "<<j.second<<"}";return o;}
template<class T,class U>ostream &operator<<(ostream &o,const map<T,U>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
template<class T>ostream &operator<<(ostream &o,const set<T>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
inline int print(void){cout << endl; return 0;}
template<class Head> int print(Head&& head){cout << head;print();return 0;} template<class Head,class... Tail> int print(Head&& head,Tail&&... tail){cout<<head<<" ";print(forward<Tail>(tail)...);return 0;}
inline int debug(void){cerr << endl; return 0;}
template<class Head> int debug(Head&& head){cerr << head;debug();return 0;} template<class Head,class... Tail> int debug(Head&& head,Tail&&... tail){cerr<<head<<" ";debug(forward<Tail>(tail)...);return 0;}
template<typename T> void PA(T &a){int ASIZE=sizeof(a)/sizeof(a[0]);for(int ii=0;ii<ASIZE;++ii){cout<<a[ii]<<" \n"[ii==ASIZE-1];}}
template<typename T> void PV(T &v){int VSIZE=v.size();for(int ii=0;ii<VSIZE;++ii){cout<<v[ii]<<" \n"[ii==VSIZE-1];}}
#define ER(x) cerr << #x << " = " << (x) << endl;
#define ERV(v) {cerr << #v << " : ";for(const auto& xxx : v){cerr << xxx << " ";}cerr << "\n";}
inline int YES(bool x){cout<<((x)?"YES":"NO")<<endl;return 0;} inline int Yes(bool x){cout<<((x)?"Yes":"No")<<endl;return 0;} inline int yes(bool x){cout<<((x)?"yes":"no")<<endl;return 0;}
inline int yES(bool x){cout<<((x)?"yES":"nO")<<endl;return 0;} inline int Yay(bool x){cout<<((x)?"Yay!":":(")<<endl;return 0;}
template<typename A,typename B> void sankou(bool x,A a,B b){cout<<((x)?(a):(b))<<endl;}
#define _overload3(_1,_2,_3,name,...) name
#define _REP(i,n) REPI(i,0,n)
#define REPI(i,a,b) for(ll i=ll(a);i<ll(b);++i)
#define REP(...) _overload3(__VA_ARGS__,REPI,_REP,)(__VA_ARGS__)
#define _RREP(i,n) RREPI(i,n,0)
#define RREPI(i,a,b) for(ll i=ll(a);i>=ll(b);--i)
#define RREP(...) _overload3(__VA_ARGS__,RREPI,_RREP,)(__VA_ARGS__)
#define EACH(e,v) for(auto& e : v)
#define PERM(v) sort((v).begin(),(v).end());for(bool c##p=1;c##p;c##p=next_permutation((v).begin(),(v).end()))
#define ADD(a,b) a=(a+ll(b))%MOD
#define MUL(a,b) a=(a*ll(b))%MOD
inline ll MOP(ll x,ll n,ll m=MOD){ll r=1;while(n>0){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}inline ll lcm(ll a,ll b){return a*b/gcd(a,b);}inline ll POW(ll a,ll b){ll c=1ll;do{if(b&1)c*=1ll*a;a*=1ll*a;}while(b>>=1);return c;}
template<typename T,typename A,typename B> inline bool between(T x,A a,B b) {return ((a<=x)&&(x<b));}template<class T> inline T sqr(T x){return x*x;}
template<typename A,typename B> inline bool chmax(A &a,const B &b){if(a<b){a=b;return 1;}return 0;}
template<typename A,typename B> inline bool chmin(A &a,const B &b){if(a>b){a=b;return 1;}return 0;}
#define tmax(x,y,z) max((x),max((y),(z)))
#define tmin(x,y,z) min((x),min((y),(z)))
#define PB push_back
#define MP make_pair
#define MT make_tuple
#define all(v) (v).begin(),(v).end()
#define rall(v) (v).rbegin(),(v).rend()
#define SORT(v) sort((v).begin(),(v).end())
#define RSORT(v) sort((v).rbegin(),(v).rend())
#define EXIST(s,e) (find((s).begin(),(s).end(),(e))!=(s).end())
#define EXISTST(s,c) (((s).find(c))!=string::npos)
#define POSL(x,val) (lower_bound(x.begin(),x.end(),val)-x.begin())
#define POSU(x,val) (upper_bound(x.begin(),x.end(),val)-x.begin())
#define GEQ(x,val) (int)(x).size() - POSL((x),(val))
#define GREATER(x,val) (int)(x).size() - POSU((x),(val))
#define LEQ(x,val) POSU((x),(val))
#define LESS(x,val) POSL((x),(val))
#define SZV(a) int((a).size())
#define SZA(a) sizeof(a)/sizeof(a[0])
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define MEMINF(a) memset(a,0x3f,sizeof(a))
#define FILL(a,b) memset(a,b,sizeof(a))
#define UNIQUE(v) sort((v).begin(),(v).end());(v).erase(unique((v).begin(),(v).end()),(v).end())
struct abracadabra{
abracadabra(){
cin.tie(0); ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
cerr << fixed << setprecision(5);
};
} ABRACADABRA;
//---------------8<---------------8<---------------8<---------------8<---------------//
/*
・グラフ
> Dijkstra
> BellmanFord
> WarshallFloyd
> Kruskal
[応用] 単一終点最短路問題は, すべての有向辺を逆向きに張り替えると, 単一始点最短路問題に帰着できる.
[使用例]
Graph<int> g(N); // 頂点数N, 重さの型がintのグラフを宣言
add_edge(g,a,b,c); // グラフgに, aからbへの重さcの無向辺を追加
add_arc(g,a,b,c); // グラフgに, aからbへの重さcの有向辺を追加
add_to_edges(edges,a,b,c); // 辺集合edgesに, 始点a, 終点b, 重さcの辺を追加
*/
template<typename T> struct Edge {
int from, to;
T weight;
Edge() : from(0), to(0), weight(0) {}
Edge(int f, int t, T w) : from(f), to(t), weight(w) {}
};
template<typename T> using Edges = vector< Edge< T > >;
template<typename T> using Graph = vector< Edges< T > >;
template<typename T> void add_edge(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from,to,w); g[to].emplace_back(to,from,w); }
template<typename T> void add_arc(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from,to,w); }
template<typename T> void add_to_edges(Edges< T > &e, int from, int to, T w = 1) { e.emplace_back(from,to,w); }
/*
・ワーシャルフロイド法
> O(V^3) [V:頂点数] (WarshallFloyd())
> O(V^2) : 辺の追加 (add_edge_to_matrix())
[備考] 全点間最短路を求めるアルゴリズム
負閉路が存在しているかの検出も可能
-> ある頂点vからv自身への最短路が負なが負閉路が存在
[注意] 結果を足し合わせる際, INFの大きさに注意
[使用例]
auto wf = WarshallFloyd(g); // グラフgにおける全点間最短路
add_edge_to_matrix(wf,a,b,c); // 隣接行列wfに, 始点a, 終点b, 重さcの辺を追加して, wfを更新
*/
template<typename T> using Matrix = vector< vector< T > >;
template<typename T> Matrix< T > WarshallFloyd(Graph< T > &g) {
const auto INF = numeric_limits< T >::max()/10;
int vertex = g.size();
Matrix< T > dist(vertex, vector< T >(vertex, INF));
for (int i = 0; i < vertex; ++i) dist[i][i] = 0;
for (int i = 0; i < vertex; ++i) {
for (auto &e : g[i]) {
dist[e.from][e.to] = min(dist[e.from][e.to], e.weight);
}
}
for (int k = 0; k < vertex; ++k) {
for (int i = 0; i < vertex; ++i) {
for (int j = 0; j < vertex; ++j) {
if (dist[i][k] != INF && dist[k][j] != INF) {
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
return dist;
}
template<typename T> void add_edge_to_matrix(Matrix< T > &mat, int from, int to, T weight = 1) {
const auto INF = numeric_limits< T >::max()/10;
mat[from][to] = mat[to][from] = min(mat[from][to], weight);
int vertex = mat.size();
for (int k : {from, to}) {
for (int i = 0; i < vertex; ++i) {
for (int j = 0; j < vertex; ++j) {
if (mat[i][k] != INF && mat[k][j] != INF) {
mat[i][j] = min(mat[i][j], mat[i][k] + mat[k][j]);
}
}
}
}
}
signed main() {
SS(int, N, M, L);
--L;
SV(int, T, N);
Graph<ll> g(N);
REP(i, M) {
SS(ll,a,b,c);
--a, --b;
add_edge(g,a,b,c);
}
auto wf = WarshallFloyd(g);
ll res = INFF;
REP(fin, N) {
ll tmp = 0;
REP(car, N) {
tmp += wf[car][fin] * T[car] * 2;
}
if (T[L] != 0) {
tmp -= wf[L][fin];
} else {
ll mx = -INFF;
ll cr = -1;
REP(car, N) {
if (T[car] == 0) continue;
if (chmax(mx, wf[car][fin] - wf[L][car])) cr = car;
}
tmp -= wf[cr][fin] - wf[L][cr];
}
chmin(res, tmp);
}
print(res);
}