結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | yuppe19 😺 |
提出日時 | 2019-02-15 15:50:13 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,787 ms / 9,973 ms |
コード長 | 2,432 bytes |
コンパイル時間 | 734 ms |
コンパイル使用メモリ | 67,584 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 23:13:01 |
合計ジャッジ時間 | 8,133 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1,463 ms
5,248 KB |
testcase_05 | AC | 1,378 ms
5,248 KB |
testcase_06 | AC | 382 ms
5,248 KB |
testcase_07 | AC | 376 ms
5,248 KB |
testcase_08 | AC | 380 ms
5,248 KB |
testcase_09 | AC | 2,787 ms
5,248 KB |
ソースコード
#include <iostream> #include <vector> using namespace std; using U64 = uint64_t; using S64 = int64_t; const S64 Primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 }; U64 ModMul(U64 a, U64 b, U64 modulus) { /* { S64 a2 = (S64)a; if (a2 >= 0) { S64 b2 = (S64)b; if (b2 >= 0) { if (!MulAsm(&a2, b2)) return (U64)a2 % modulus; } } } */ a %= modulus; b %= modulus; U64 result = 0; while (a != 0) { if ((a & 1) != 0) { result += b; if(result >= modulus) { result -= modulus; } } a >>= 1; b <<= 1; if(b >= modulus) { b -= modulus; } } return result; } U64 ModPow(U64 value, U64 exponent, U64 modulus) { U64 w = 1; while (exponent > 0) { if ((exponent & 1) != 0) w = ModMul(w, value, modulus); value = ModMul(value, value, modulus); exponent >>= 1; } return w; } bool is_prime(S64 n) { if (n <= 1) return false; if ((n & 1) == 0) return n == 2; if (n <= 1920000) { for(U64 p : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) { if(n == p) { return true; } if(n % p == 0) { return false; } } /* if (n == 3) return true; if (n % 6 != 1 && n % 6 != 5) return false; S64 m = n / 6 * 2 + (n % 6 == 1 ? 0 : 1); size_t size; const U8* primes_bin = GetPrimesBin(&size); return (primes_bin[m / 8] & (1 << (m % 8))) != 0; */ } // Miller-Rabin primality test. U64 enough; if (n < 2047) enough = 1; else if (n < 1373653) enough = 2; else if (n < 25326001) enough = 3; else if (n < 3215031751) enough = 4; else if (n < 2152302898747) enough = 5; else if (n < 3474749660383) enough = 6; else if (n < 341550071728321) enough = 7; else if (n < 3825123056546413051) enough = 9; else { // n < 2^64 < 318665857834031151167461 enough = 12; } { U64 d = (U64)n - 1; U64 s = 0; while ((d & 1) == 0) { s++; d >>= 1; } for (U64 i = 0; i < enough; i++) { U64 x = ModPow(Primes[i], d, (U64)n); U64 j; if (x == 1 || x == (U64)n - 1) continue; bool probablyPrime = false; for (j = 0; j < s; j++) { x = ModPow(x, 2, (U64)n); if (x == (U64)n - 1) { probablyPrime = true; break; } } if (!probablyPrime) return false; } return true; } } int main(void) { int n; scanf("%d", &n); for(int loop=0; loop<n; ++loop) { S64 x; scanf("%ld", &x); printf("%ld %d\n", x, is_prime(x)); } return 0; }