結果

問題 No.534 フィボナッチフィボナッチ数
ユーザー FF256grhyFF256grhy
提出日時 2019-02-22 17:39:47
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,885 bytes
コンパイル時間 2,330 ms
コンパイル使用メモリ 192,724 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-24 18:09:36
合計ジャッジ時間 3,717 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 2 ms
6,816 KB
testcase_15 AC 2 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,820 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 2 ms
6,816 KB
testcase_23 AC 2 ms
6,820 KB
testcase_24 AC 2 ms
6,820 KB
testcase_25 AC 2 ms
6,820 KB
testcase_26 AC 2 ms
6,820 KB
testcase_27 AC 2 ms
6,820 KB
testcase_28 AC 2 ms
6,816 KB
testcase_29 AC 2 ms
6,820 KB
testcase_30 AC 2 ms
6,820 KB
testcase_31 AC 2 ms
6,816 KB
testcase_32 AC 2 ms
6,820 KB
testcase_33 AC 2 ms
6,820 KB
testcase_34 AC 2 ms
6,820 KB
testcase_35 AC 2 ms
6,816 KB
testcase_36 AC 2 ms
6,816 KB
testcase_37 AC 2 ms
6,816 KB
testcase_38 AC 2 ms
6,816 KB
testcase_39 AC 2 ms
6,820 KB
testcase_40 AC 2 ms
6,816 KB
testcase_41 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long   signed int LL;
typedef long long unsigned int LU;
#define incII(i, l, r) for(int i = (l)    ; i <= (r); ++i)
#define incID(i, l, r) for(int i = (l)    ; i <  (r); ++i)
#define decII(i, l, r) for(int i = (r)    ; i >= (l); --i)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i)
#define inc(i, n)  incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n)  decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define inID(v, l, r) ((l) <= (v) && (v) <  (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define  ALL(v)  v.begin(),  v.end()
#define RALL(v) v.rbegin(), v.rend()
template<typename T> bool setmin  (T & a, T b) { if(b <  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax  (T & a, T b) { if(b >  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; }
LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
#define bit(b, i) (((b) >> (i)) & 1)
#define BC __builtin_popcountll
#define SC(T, v) static_cast<T>(v)
#define SI(v) SC(int, v.size())
#define SL(v) SC( LL, v.size())
#define RF(e, v) for(auto & e: v)
#define ei else if
#define UR assert(false)

// ---- ----

template<typename T, int N> struct Matrix {
	vector<vector<T>> a;
	Matrix(const vector<vector<T>> & v = { }) { init(v); }
	void init(const vector<vector<T>> & v) {
		a = vector<vector<T>>(N, vector<T>(N, 0));
		assert(v.size() <= N);
		inc(i, v.size()) { assert(v[i].size() <= N);
		inc(j, v[i].size()) {
			a[i][j] = v[i][j];
		}
		}
	}
	vector<T> & operator[](int i) { return a[i]; }
	Matrix id() {
		Matrix e;
		inc(i, N) { e[i][i] = 1; }
		return e;
	}
	Matrix tp() {
		Matrix b;
		inc(i, N) {
		inc(j, N) {
			b[j][i] = a[i][j];
		}
		}
		return b;
	}
	Matrix & operator+=(const Matrix & b) {
		inc(i, N) {
		inc(j, N) {
			a[i][j] += b.a[i][j];
		}
		}
		return (*this);
	}
	Matrix & operator*=(T b) {
		inc(i, N) {
		inc(j, N) {
			a[i][j] *= b;
		}
		}
		return (*this);
	}
	Matrix & operator*=(const Matrix & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
		inc(k, N) {
			c[i][j] += a[i][k] * b.a[k][j];
		}
		}
		}
		return (*this) = c;
	}
	Matrix & operator^=(LU b) {
		Matrix t[64], c = id();
		int D = 64;
		inc(i, D) { if((b >> i) == 0) { D = i; break; } }
		inc(i, D) { t[i] = (i == 0 ? (*this) : t[i - 1] * t[i - 1]); }
		inc(i, D) { if((b >> i) & 1) { c *= t[i]; } }
		return (*this) = c;
	}
	Matrix operator+(const Matrix & b) const { Matrix c = a; return c += b; }
	Matrix operator*(             T b) const { Matrix c = a; return c *= b; }
	Matrix operator*(const Matrix & b) const { Matrix c = a; return c *= b; }
	Matrix operator^(            LU b) const { Matrix c = a; return c ^= b; }
};
template<typename T, int N> Matrix<T, N> operator*(T a, const Matrix<T, N> & b) { return b * a; }
template<typename T, int N> ostream & operator<<(ostream & os, const Matrix<T, N> & m) {
	inc(i, N) {
	inc(j, N) {
		os << m.a[i][j] << " ";
	} os << endl;
	}
	return os;
}

// ---- ----

template<LL M> class ModInt {
private:
	LL v = 0;
public:
	ModInt() { }
	ModInt(LL vv) { setval(vv); }
	ModInt & setval(LL vv) { v = vv % M; if(v < 0) { v += M; } return (*this); }
	LL getval() const { return v; }
	ModInt & operator+=(const ModInt & b)       { return setval(v + b.v); }
	ModInt & operator-=(const ModInt & b)       { return setval(v - b.v); }
	ModInt & operator*=(const ModInt & b)       { return setval(v * b.v); }
	ModInt & operator/=(const ModInt & b)       { return setval(v * b.inv()); }
	ModInt & operator^=(            LU b)       { return setval(ex(v, b)); }
	ModInt   operator+ (                ) const { return ModInt(+v); }
	ModInt   operator- (                ) const { return ModInt(-v); }
	ModInt   operator+ (const ModInt & b) const { return ModInt(v + b.v); }
	ModInt   operator- (const ModInt & b) const { return ModInt(v - b.v); }
	ModInt   operator* (const ModInt & b) const { return ModInt(v * b.v); }
	ModInt   operator/ (const ModInt & b) const { return ModInt(v * b.inv()); }
	ModInt   operator^ (            LU b) const { return ModInt(ex(v, b)); }
	LL inv() const {
		LL x = (ex_gcd(v, M).FI + M) % M;
		assert(v * x % M == 1);
		return x;
	}
	LL ex(LL a, LU b) const {
		LL D = 64, x[64], y = 1;
		inc(i, D) { if((b >> i) == 0) { D = i; break; } }
		inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % M; }
		inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= M; } }
		return y;
	}
	pair<LL, LL> ex_gcd(LL a, LL b) const {
		if(b == 0) { return MP(1, 0); }
		auto p = ex_gcd(b, a % b);
		return MP(p.SE, p.FI - (a / b) * p.SE);
	}
};
template<LL M> ModInt<M> operator+(LL a, const ModInt<M> & b) { return  b + a; }
template<LL M> ModInt<M> operator-(LL a, const ModInt<M> & b) { return -b + a; }
template<LL M> ModInt<M> operator*(LL a, const ModInt<M> & b) { return  b * a; }
template<LL M> ModInt<M> operator/(LL a, const ModInt<M> & b) { return  a * b.inv(); }
template<LL M> istream & operator>>(istream & is, ModInt<M> & b) { LL v; is >> v; b.setval(v); return is; }
template<LL M> ostream & operator<<(ostream & os, const ModInt<M> & b) { return (os << b.getval()); }

// ---- ----

int main() {
	LL n;
	cin >> n;
	
	Matrix<ModInt<2'000'000'016>, 2> a( { { 1, 1, }, { 1, 0 } } );
	Matrix<ModInt<1'000'000'007>, 2> b( { { 1, 1, }, { 1, 0 } } );
	
	LL x = (a ^ n)[0][1].getval();
	LL y = (b ^ x)[0][1].getval();
	
	cout << y << endl;
	
	return 0;
}
0