結果
問題 | No.409 ダイエット |
ユーザー | バイト |
提出日時 | 2019-03-04 23:56:52 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 195 ms / 2,000 ms |
コード長 | 51,680 bytes |
コンパイル時間 | 3,704 ms |
コンパイル使用メモリ | 232,496 KB |
実行使用メモリ | 33,516 KB |
最終ジャッジ日時 | 2024-06-23 14:03:37 |
合計ジャッジ時間 | 10,783 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 1 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,940 KB |
testcase_23 | AC | 2 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,944 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 3 ms
6,944 KB |
testcase_36 | AC | 3 ms
6,940 KB |
testcase_37 | AC | 3 ms
6,940 KB |
testcase_38 | AC | 3 ms
6,940 KB |
testcase_39 | AC | 3 ms
6,940 KB |
testcase_40 | AC | 3 ms
6,944 KB |
testcase_41 | AC | 3 ms
6,944 KB |
testcase_42 | AC | 3 ms
6,940 KB |
testcase_43 | AC | 3 ms
6,940 KB |
testcase_44 | AC | 3 ms
6,944 KB |
testcase_45 | AC | 4 ms
6,940 KB |
testcase_46 | AC | 3 ms
6,940 KB |
testcase_47 | AC | 4 ms
6,940 KB |
testcase_48 | AC | 3 ms
6,944 KB |
testcase_49 | AC | 3 ms
6,944 KB |
testcase_50 | AC | 3 ms
6,940 KB |
testcase_51 | AC | 3 ms
6,944 KB |
testcase_52 | AC | 3 ms
6,940 KB |
testcase_53 | AC | 4 ms
6,940 KB |
testcase_54 | AC | 3 ms
6,940 KB |
testcase_55 | AC | 86 ms
15,788 KB |
testcase_56 | AC | 26 ms
8,160 KB |
testcase_57 | AC | 192 ms
33,516 KB |
testcase_58 | AC | 79 ms
15,516 KB |
testcase_59 | AC | 92 ms
14,920 KB |
testcase_60 | AC | 67 ms
13,756 KB |
testcase_61 | AC | 161 ms
27,216 KB |
testcase_62 | AC | 187 ms
31,932 KB |
testcase_63 | AC | 147 ms
25,288 KB |
testcase_64 | AC | 70 ms
13,936 KB |
testcase_65 | AC | 133 ms
18,860 KB |
testcase_66 | AC | 169 ms
27,572 KB |
testcase_67 | AC | 137 ms
24,764 KB |
testcase_68 | AC | 92 ms
15,024 KB |
testcase_69 | AC | 144 ms
24,156 KB |
testcase_70 | AC | 146 ms
24,960 KB |
testcase_71 | AC | 84 ms
16,088 KB |
testcase_72 | AC | 195 ms
32,196 KB |
testcase_73 | AC | 155 ms
21,068 KB |
testcase_74 | AC | 110 ms
20,192 KB |
testcase_75 | AC | 152 ms
23,244 KB |
testcase_76 | AC | 128 ms
22,696 KB |
testcase_77 | AC | 66 ms
10,936 KB |
testcase_78 | AC | 100 ms
19,024 KB |
testcase_79 | AC | 70 ms
13,672 KB |
testcase_80 | AC | 187 ms
30,012 KB |
testcase_81 | AC | 150 ms
23,328 KB |
testcase_82 | AC | 122 ms
21,448 KB |
testcase_83 | AC | 128 ms
22,948 KB |
testcase_84 | AC | 90 ms
13,260 KB |
testcase_85 | AC | 10 ms
6,944 KB |
testcase_86 | AC | 91 ms
14,312 KB |
testcase_87 | AC | 155 ms
26,376 KB |
testcase_88 | AC | 51 ms
10,048 KB |
testcase_89 | AC | 93 ms
9,180 KB |
testcase_90 | AC | 42 ms
6,940 KB |
testcase_91 | AC | 96 ms
9,540 KB |
ソースコード
//注意点 //Tは3つの値を持つ構造 //だがワイルドカードとしても使っている #include <bits/stdc++.h> using namespace std; //@起動時 struct initon { initon() { cin.tie(0); ios::sync_with_stdio(false); cout.setf(ios::fixed); cout.precision(16); srand((unsigned) clock() + (unsigned) time(NULL)); }; } __initon; //衝突対策 #define ws ___ws //@必須構造 struct T { int f, s, t; T() { f = -1, s = -1, t = -1; } T(int f, int s, int t) : f(f), s(s), t(t) {} bool operator<(const T &r) const { return f != r.f ? f < r.f : s != r.s ? s < r.s : t < r.t; //return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t; 大きい順 } bool operator>(const T &r) const { return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t; //return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t; 小さい順 } int operator[](int i) { assert(i < 3); return i == 0 ? f : i == 1 ? s : t; } }; //@マクロ省略系 型,構造 #define int long long #define ll long long #define double long double #define ull unsigned long long using dou = double; using itn = int; using str = string; using bo= bool; using P = pair<ll, ll>; #define F first #define fi first #define S second #define se second #define vec vector #define beg begin #define rbeg rbegin #define con continue #define bre break #define brk break #define is == //マクロ省略系 コンテナ using vi = vector<int>; #define vvi(a, b, c) vec<vi> a(b,vi(c)) using vb = vector<bool>; #define vvb(a, b, c) vec<vb> a(b,vb(c)) using vs = vector<string>; #define vvs(a, b, c) vec<vs> a(b,vs(c)) using vl = vector<ll>; #define vvl(a, b, c) vec<vl> a(b,vl(c)) using vd = vector<double>; #define vvd(a, b, c) vec<vd> a(b,vd(c)) using vc=vector<char>; #define vvc(a, b, c) vec<vc> a(b,vc(c)) using vp = vector<P>; #define vvp(a, b, c) vec<vp> a(b,vp(c)) using vt = vector<T>; #define vvt(a, b, c) vec<vt> a(b,vt(c)) #define v3i(a, b, c, d) vector<vector<vi>> a(b, vector<vi>(c, vi(d))) #define v3d(a, b, c, d) vector<vector<vd>> a(b, vector<vd>(c, vd(d))) #define v3m(a, b, c, d) vector<vector<vm>> a(b, vector<vm>(c, vm(d))) #define PQ priority_queue<ll, vector<ll>, greater<ll> > #define tos to_string using mapi = map<int, int>; using mapd = map<dou, int>; using mapc = map<char, int>; using maps = map<str, int>; using seti = set<int>; using setd = set<dou>; using setc = set<char>; using sets = set<str>; using qui = queue<int>; #define bset bitset #define uset unordered_set #define mset multiset #define umap unordered_map #define mmap multimap //マクロ 繰り返し #define _overloadrep(_1, _2, _3, _4, name, ...) name # define _rep(i, n) for(int i = 0,_lim=n; i < _lim ; i++) #define repi(i, m, n) for(int i = m,_lim=n; i < _lim ; i++) #define repadd(i, m, n, ad) for(int i = m,_lim=n; i < _lim ; i+= ad) #define rep(...) _overloadrep(__VA_ARGS__,repadd,repi,_rep,)(__VA_ARGS__) #define _rer(i, n) for(int i = n; i >= 0 ; i--) #define reri(i, m, n) for(int i = m,_lim=n; i >= _lim ; i--) #define rerdec(i, m, n, dec) for(int i = m,_lim=n; i >= _lim ; i-=dec) #define rer(...) _overloadrep(__VA_ARGS__,rerdec,reri,_rer,)(__VA_ARGS__) #define fora(a, b) for(auto&& a : b) //#define forg(gi, ve) if (ve.size())for (int gi = 0, f = ve[gi].from, t = ve[gi].to, c = ve[gi].cost; gi < ve.size(); gi++,f = ve[gi].from, t = ve[gi].to, c = ve[gi].cost) // ve[gi]が参照外を指すのを防ぐ #define forg(gi, ve) for (int gi = 0, f, t, c; gi < ve.size() && (f = ve[gi].from, t = ve[gi].to, c = ve[gi].cost, true); gi++) #define fort(gi, ve) for (int gi = 0, f, t, c;((ve[gi].to==p?gi++:1),gi < ve.size()) && (f = ve[gi].from, t = ve[gi].to, c = ve[gi].cost, true);gi++ ) //マクロ 定数 #define k3 1010 #define k4 10101 #define k5 101010 #define k6 1010101 #define k7 10101010 const int inf = (int) 1e9 + 100; const ll linf = (ll) 1e18 + 100; const double eps = 1e-9; const double PI = 3.1415926535897932384626433832795029L; const int y4[] = {-1, 1, 0, 0}; const int x4[] = {0, 0, -1, 1}; const int y8[] = {0, 1, 0, -1, -1, 1, 1, -1}; const int x8[] = {1, 0, -1, 0, 1, -1, 1, -1}; //マクロ省略形 関数等 #define arsz(a) (sizeof(a)/sizeof(a[0])) #define sz(a) (a.size()) #define rs(a) (a.resize()) #define mp make_pair #define pb push_back #define pf push_front #define eb emplace_back #define all(a) (a).begin(),(a).end() #define rall(a) (a).rbegin(),(a).rend() //@拡張系 こう出来るべきというもの //埋め込み 存在を意識せずに機能を増やされているもの // 境界チェック付きvector namespace std_vector_bounds_checking { using namespace std; template<class T, class A = std::allocator<T>> struct vector : std::vector<T, A> { using std::vector<T, A>::vector; typename std::vector<T>::reference operator[](typename std::vector<T>::size_type n) { return this->at(n); } }; } namespace std { template<> class hash<std::pair<signed, signed>> { public: size_t operator()(const std::pair<signed, signed> &x) const { return hash<ll>()(((ll) x.first << 32) + x.second); } }; template<> class hash<std::pair<ll, ll>> { public: size_t operator()(const std::pair<ll, ll> &x) const { return hash<ll>()(((ll) x.first << 32) + x.second); } }; } istream &operator>>(istream &iss, P &a) { iss >> a.first >> a.second; return iss; } template<typename T> istream &operator>>(istream &iss, vector<T> &vec) { for (T &x: vec) iss >> x; return iss; } template<typename T> ostream &operator<<(ostream &os, vector <T> &vec) { for (int i = 0; i < vec.size(); i++)os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template<typename V, typename H> void resize(vector<V> &vec, const H head) { //再帰の終端。 可変長templateの長さが 0 になるとこっちが呼ばれる。 vec.resize(head); } template<typename V, typename H, typename ... T> void resize(vector<V> &vec, const H &head, const T ... tail) { vec.resize(head); for (auto &v: vec) resize(v, tail...); } template<class T> T pop(set<T> &set) { T res = *set.begin(); set.erase(set.find(res)); return res; } template<class T> T pop(mset<T> &set) { T res = *set.begin(); set.erase(set.find(res)); return res; } template<class T> T popBack(set<T> &set) { T res = *set.rbegin(); set.erase(set.find(res)); return res; } template<class T> T popBack(mset<T> &set) { T res = *set.rbegin(); set.erase(set.find(res)); return res; } template<class T> inline void sort(vector<T> &a) { sort(a.begin(), a.end()); }; template<class T> inline void sort(vector<T> &a, int len) { sort(a.begin(), a.begin() + len); }; template<class T, class F> inline void sort(vector<T> &a, F f) { sort(a.begin(), a.end(), [&](T l, T r) { return f(l) < f(r); }); }; template<class T> inline void rsort(vector<T> &a) { sort(a.begin(), a.end(), greater<T>()); }; template<class T> inline void rsort(vector<T> &a, int len) { sort(a.begin(), a.begin() + len, greater<T>()); }; template<class U, class F> inline void rsort(vector<U> &a, F f) { sort(a.begin(), a.end(), [&](U l, U r) { return f(l) > f(r); }); }; template<class U> inline void sortp(vector<U> &a, vector<U> &b) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); sort(c); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second;; } }; template<class U, class F> inline void sortp(vector<U> &a, vector<U> &b, F f) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); sort(c, f); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U, class F> inline void rsortp(vector<U> &a, vector<U> &b) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); rsort(c); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U, class F> inline void rsortp(vector<U> &a, vector<U> &b, F f) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); rsort(c, f); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U> inline void sortt(vector<U> &a, vector<U> &b, vector<U> &c) { vt r; int n = sz(a); assert(n == sz(b)); assert(n == sz(c)); rep(i, n)r.eb(a[i], b[i], c[i]); sort(r); rep(i, n) { a[i] = r[i].f; b[i] = r[i].s; c[i] = r[i].t; } }; template<class U, class F> inline void sortt(vector<U> &a, vector<U> &b, vector<U> &c, F f) { vt r; int n = sz(a); assert(n == sz(b)); assert(n == sz(c)); rep(i, n)r.eb(a[i], b[i], c[i]); sort(r, f); rep(i, n) { a[i] = r[i].f; b[i] = r[i].s; c[i] = r[i].t; } }; template<class U, class F> inline void rsortt(vector<U> &a, vector<U> &b, vector<U> &c, F f) { vt r; int n = sz(a); assert(n == sz(b)); assert(n == sz(c)); rep(i, n)r.eb(a[i], b[i], c[i]); rsort(r, f); rep(i, n) { a[i] = r[i].f; b[i] = r[i].s; c[i] = r[i].t; } }; template<class T> inline void sort2(vector<vector<T>> &a) { for (int i = 0, n = a.size(); i < n; i++)sort(a[i]); } template<class T> inline void rsort2(vector<vector<T>> &a) { for (int i = 0, n = a.size(); i < n; i++)rsort(a[i]); } template<typename A, size_t N, typename T> void fill(A (&a)[N], const T &v) { rep(i, N)a[i] = v; } template<typename A, size_t N, size_t O, typename T> void fill(A (&a)[N][O], const T &v) { rep(i, N)rep(j, O)a[i][j] = v; } template<typename A, size_t N, size_t O, size_t P, typename T> void fill(A (&a)[N][O][P], const T &v) { rep(i, N)rep(j, O)rep(k, P)a[i][j][k] = v; } template<typename A, size_t N, size_t O, size_t P, size_t Q, typename T> void fill(A (&a)[N][O][P][Q], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep(l, Q)a[i][j][k][l] = v; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, typename T> void fill(A (&a)[N][O][P][Q][R], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep(l, Q)rep(m, R)a[i][j][k][l][m] = v; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, size_t S, typename T> void fill(A (&a)[N][O][P][Q][R][S], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep(l, Q)rep(m, R)rep(n, S)a[i][j][k][l][m][n] = v; } template<typename V, typename T> void fill(V &xx, const T vall) { xx = vall; } template<typename V, typename T> void fill(vector<V> &vecc, const T vall) { for (auto vx: vecc) fill(vx, vall); } //@汎用便利関数 入力 template<typename T = int> T in() { T x; cin >> x; return (x); } string sin() { return in<string>(); } double din() { return in<double>(); } ll lin() { return in<ll>(); } #define na(a, n) a.resize(n); rep(i,n) cin >> a[i]; #define nao(a, n) a.resize(n+1); rep(i,n) cin >> a[i+1]; #define nad(a, n) a.resize(n); rep(i,n) cin >> a[i], a[i]--; #define na2(a, b, n) a.resize(n),b.resize(n);rep(i, n)cin >> a[i] >> b[i]; #define na2d(a, b, n) a.resize(n),b.resize(n);rep(i, n)cin >> a[i] >> b[i],a[i]--,b[i]--; #define na3(a, b, c, n) a.resize(n),b.resize(n),c.resize(n); rep(i, n)cin >> a[i] >> b[i] >> c[i]; #define na3d(a, b, c, n) a.resize(n),b.resize(n),c.resize(n); rep(i, n)cin >> a[i] >> b[i] >> c[i],a[i]--,b[i]--,c[i]--; #define nt(a, h, w) resize(a,h,w);rep(hi,h)rep(wi,w) cin >> a[hi][wi]; #define ntd(a, h, w) rs(a,h,w);rep(hi,h)rep(wi,w) cin >> a[hi][wi], a[hi][wi]--; #define ntp(a, h, w) fill(a,'#');rep(hi,1,h+1)rep(wi,1,w+1) cin >> a[hi][wi]; //汎用便利関数 出力 template<class T> void out(T x) { typeid(x) == typeid(double) ? cout << fixed << setprecision(10) << x << endl : cout << x << endl; } //デバッグ #define debug(x) cerr << x << " " << "(L:" << __LINE__ << ")" << '\n'; //よく使うクラス、構造体 class UnionFind { public: vi par, rank, sizes; int n, trees; UnionFind(int n) : n(n), trees(n) { par.resize(n), rank.resize(n), sizes.resize(n); rep(i, n)par[i] = i, sizes[i] = 1; } int root(int x) { if (par[x] == x)return x; else return par[x] = root(par[x]); } int find(int x) { return root(x); } void unite(int x, int y) { x = root(x); y = root(y); if (x == y)return; if (rank[x] < rank[y])swap(x, y); trees--; par[y] = x; sizes[x] += sizes[y]; if (rank[x] == rank[y])rank[x]++; } bool same(int x, int y) { return root(x) == root(y); } int size(int x) { return sizes[root(x)]; } //順不同 umapなので vec<vi> sets() { vec<vi> res(trees); umap<int, vi> map; rep(i, n) map[root(i)].push_back(i); int i = 0; for (auto &&p:map) { int r = p.F; res[i].push_back(r); for (auto &&v:p.S) { if (r == v)continue; res[i].push_back(v); } i++; } return res; } }; //MOD関連 ll MOD = (int) 1e9 + 7; class mint { public: int x; mint() : x(0) {} mint(signed y) : x(y >= 0 ? y % MOD : MOD - (-y) % MOD) {} mint(int y) : x(y >= 0 ? y % MOD : MOD - (-y) % MOD) {} static int _mpow(int v, ll a) { ll x = v, n = a, res = 1; while (n) { if (n & 1)res = (res * x) % MOD; x = (x * x) % MOD; n >>= 1; } return res; } // Arithmetic Oprators mint &operator+=(mint that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } mint &operator-=(mint that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } mint &operator*=(mint that) { x = 1LL * x * that.x % MOD; return *this; } mint &operator/=(const mint &that); mint &operator^=(const mint &that) { this->x = _mpow(x, that.x); return *this; } mint &operator%=(mint that) { x %= that.x; return *this; } mint &operator+=(const int that) { return *this += mint(that); } mint &operator-=(const int that) { return *this -= mint(that); } mint &operator*=(const int that) { return *this *= mint(that); } mint &operator/=(const int that); mint &operator^=(const int that) { this->x = _mpow(x, that); return *this; } mint &operator%=(const int that) { return *this %= mint(that); } mint &operator+=(const signed that) { return *this += mint(that); } mint &operator-=(const signed that) { return *this -= mint(that); } mint &operator*=(const signed that) { return *this *= mint(that); } mint &operator/=(const signed that); mint &operator^=(const signed that) { this->x = _mpow(x, that); return *this; } mint &operator%=(const signed that) { return *this %= mint(that); } // Comparators bool operator<(mint that) { return x < that.x; } bool operator>(mint that) { return x > that.x; } bool operator<=(mint that) { return x <= that.x; } bool operator>=(mint that) { return x >= that.x; } bool operator!=(mint that) { return x != that.x; } bool operator==(mint that) { return x == that.x; } bool operator!=(int that) { return x != that; } bool operator==(int that) { return x == that; } bool operator!=(signed that) { return x != that; } bool operator==(signed that) { return x == that; } // Utilities unsigned getval() const { return x; } operator int() { return x; } mint operator+(mint that) const { return mint(*this) += that; } mint operator-(mint that) const { return mint(*this) -= that; } mint operator*(mint that) const { return mint(*this) *= that; } mint operator%(mint that) const { return mint(*this) %= that; } mint operator+(const int that) const { return mint(*this) += that; } mint operator-(const int that) const { return mint(*this) -= that; } mint operator*(const int that) const { return mint(*this) *= that; } mint operator%(const int that) const { return mint(*this) %= that; } mint operator=(const int that) { return *this = mint(that); } mint operator+(const signed that) const { return mint(*this) += that; } mint operator-(const signed that) const { return mint(*this) -= that; } mint operator*(const signed that) const { return mint(*this) *= that; } mint operator%(const signed that) const { return mint(*this) %= that; } mint operator=(const signed that) { return *this = mint(that); } mint operator++() { x++; return *this; } mint operator++(signed) { auto ret = *this; x++; return ret; } friend void operator+=(ll &a, const mint &b) { a = mint(a % MOD + b.x); } friend void operator-=(ll &a, const mint &b) { a = mint(a % MOD - b.x); } friend void operator*=(ll &a, const mint &b) { a = mint(a % MOD * b.x); } friend void operator/=(ll &a, const mint &b); friend mint operator+(const ll a, const mint &b) { return mint(a % MOD + b.x); } friend mint operator-(const ll a, const mint &b) { return mint(a % MOD - b.x); } friend mint operator*(const ll a, const mint &b) { return mint(a % MOD * b.x); } friend mint operator^(const ll a, const mint &b) { return _mpow(a, b.x); } }; mint itom(int v) { mint res; res.x = v; return res; } const int setModMax = 510000; vector<mint> fac, finv, inv; void setMod(int m = MOD) { fac.resize(setModMax); finv.resize(setModMax); inv.resize(setModMax); MOD = m; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < setModMax; i++) { fac[i] = fac[i - 1].x * i % MOD; inv[i] = MOD - inv[MOD % i].x * (MOD / i) % MOD; finv[i] = finv[i - 1].x * inv[i].x % MOD; } } mint mpow(int v, ll a) { return mint::_mpow(v, a); } mint com(ll n, ll r) { if (n < r || n < 0 || r < 0)return 0; if (fac.size() == 0)setMod(); return fac[n] * finv[r] * finv[n - r]; } mint ncr(ll n, ll r) { return com(n, r); } mint nhr(ll n, ll r) { return com(n + r - 1, r); } //拡張ユークリッドの互除法 mint minv(ll a) { if (fac[0] == 0)setMod(); if (a < setModMax) return inv[a]; a %= MOD; ll b = MOD, x = 1, y = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); x -= t * y; swap(x, y); } return x; } mint &mint::operator/=(const mint &that) { return *this *= minv(that.x); } mint &mint::operator/=(const ll a) { return *this *= minv(a); } mint &mint::operator/=(const signed a) { return *this *= minv(a); } void operator/=(ll &a, const mint &b) { a = (a * minv(b.x)).x; } using vm=vector<mint>; #define vvm(a, b, c) vec<vm> a(b,vm(c)) using PM = pair<mint, mint>; vb isPrime; vi primes; void setPrime() { isPrime.resize(4010101); fill(isPrime, true); int len = sizeof(isPrime) / sizeof(isPrime[0]); isPrime[0] = isPrime[1] = false; for (int i = 2; i <= sqrt(len) + 5; ++i) { if (!isPrime[i])continue; for (int j = 2; i * j < len; ++j) { isPrime[i * j] = false; } } rep(i, len)if (isPrime[i])primes.pb(i); } //幾何 Pをcomplexとして扱う bool eq(double a, double b) { return fabs(a - b) < eps; } using C =complex<double>; C rot(C &a, dou th) { return a * C(cos(th), sin(th)); } dou inpro(C &a, C &b) { return real(a * conj(b)); } //90度回転させて内積が0なら平行 bool line(C a, C b, C c) { C ab = b - a; C ac = c - a; //複素数の掛け算は回転 ab *= C(0, 1); return eq(inpro(ab, ac), 0); } bool line(P a, P b, P c) { return line(C(a.F, a.S), C(b.F, b.S), C(c.F, c.S)); } bool line(int xa, int ya, int xb, int yb, int xc, int yc) { C a = C(xa, ya); C b = C(xb, yb); C c = C(xc, yc); return line(a, b, c); } //便利関数 //テスト用 char ranc() { return (char) ('a' + rand() % 26); } int rand(int min, int max) { assert(min <= max); if (min >= 0 && max >= 0) { return rand() % (max + 1 - min) + min; } else if (max < 0) { return -rand(-max, -min); } else { //+ if (rand() % 2) { return rand(0, max); //- } else { return -rand(0, -min); } } } vi ranv(int n, int min, int max) { vi v(n); rep(i, n)v[i] = rand(min, max); return v; } //単調増加 vi ranvi(int n, int min, int max) { vi v(n); bool bad = 1; while (bad) { bad = 0; v.resize(n); rep(i, n) { if (i && min > max - v[i - 1]) { bad = 1; break; } if (i)v[i] = v[i - 1] + rand(min, max - v[i - 1]); else v[i] = rand(min, max); } } return v; } void ranvlr(int n, int min, int max, vi &l, vi &r) { l.resize(n); r.resize(n); rep(i, n) { l[i] = rand(min, max); r[i] = l[i] + rand(0, max - l[i]); } } int pow(int a) { return a * a; }; void iota(vector<int> ve, int s, int n) { ve.resize(n); iota(all(ve), s); } vi iota(int s, int n) { vi ve; ve.resize(n); iota(all(ve), s); return ve; } void ole() { string a = "a"; rep(i, 30)a += a; rep(i, 1 << 17)cout << a << endl; cout << "OLE 出力長制限超過" << endl; exit(0); } void tle() { while (inf)cout << inf << endl; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll gcd(vi b) { ll res = b[0]; for (auto &&v :b)res = gcd(v, res); return res; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } ll reverse(ll a) { ll res = 0; while (a) { res *= 10; res += a % 10; a /= 10; } return res; } template<class T> void reverse(vector<T> &a) { reverse(all(a)); } ll ceil(ll a, ll b) { if (b == 0) { ole(); return -1; } else return (a + b - 1) / b; } ll sqrt(ll a) { if (a < 0)ole(); ll res = (ll) std::sqrt(a); while (res * res < a)res++; return res; } double log(double e, double x) { return log(x) / log(e); } ll sig(ll t) { return (1 + t) * t / 2; } ll sig(ll s, ll t) { return (s + t) * (t - s + 1) / 2; } vi divisors(int v) { vi res; for (int i = 1; i <= sqrt(v); ++i) { if (v % i == 0) { res.pb(i); if (i != v / i)res.pb(v / i); } } return res; } vi factorization(int v) { int tv = v; vi res; if (isPrime.size() == 0)setPrime(); for (auto &&p :primes) { if (v % p == 0)res.push_back(p); while (v % p == 0) { v /= p; } if (v == 1 || p * p > tv)break; } if (v > 1)res.pb(v); return res; } unordered_map<int, int> factorizationMap(int v) { int tv = v; unordered_map<int, int> res; if (isPrime.size() == 0)setPrime(); for (auto &&p :primes) { while (v % p == 0) { res[p]++; v /= p; } if (v == 1 || p * p > tv)break; } if (v > 1)res[v]++; return res; } int get(int a, int keta) { return (a / (int) pow(10, keta)) % 10; } int keta(int v) { int cou = 0; while (v) { cou++, v %= 10; } return cou; } template<class T> void imo(vector<T> &v) { int n = v.size(); rep(i, n - 1)v[i + 1] += v[i]; } //変換系 template<class T, class U> vector<T> keys(vector<pair<T, U>> a) { vector<T> res; for (auto &&k :a)res.pb(k.F); return res; } template<class T, class U> vector<U> keys(map<T, U> a) { vector<U> res; for (auto &&k :a)res.pb(k.F); return res; } template<class T, class U> vector<U> keys(umap<T, U> a) { vector<U> res; for (auto &&k :a)res.pb(k.F); return res; } template<class T, class U> vector<U> values(vector<pair<T, U>> a) { vector<U> res; for (auto &&k :a)res.pb(k.S); return res; } template<class T, class U> vector<T> values(map<T, U> a) { vector<T> res; for (auto &&k :a)res.pb(k.S); return res; } template<class T, class U> vector<T> values(umap<T, U> a) { vector<T> res; for (auto &&k :a)res.pb(k.S); return res; } vi list(int a) { vi res; while (a) { res.insert(res.begin(), a % 10); a /= 10; } return res; } template<class T, class U> bool chmax(T &a, const U &b) { if (a < b) { a = b; return true; } return false; } template<class T, class U> bool chmin(T &a, const U &b) { if (b < a) { a = b; return true; } return false; } template<class T> T min(T a, signed b) { return a < b ? a : b; } template<class T> T max(T a, signed b) { return a < b ? b : a; } template<class T> T min(T a, T b, T c) { return a >= b ? b >= c ? c : b : a >= c ? c : a; } template<class T> T max(T a, T b, T c) { return a <= b ? b <= c ? c : b : a <= c ? c : a; } template<class T> T min(vector<T> a) { return *min_element(all(a)); } template<class T> T min(vector<T> a, int n) { return *min_element(a.begin(), a.begin() + min(n, sz(a))); } template<class T> T min(vector<T> a, int s, int n) { return *min_element(a.begin() + s, a.begin() + min(n, sz(a))); } template<class T> T max(vector<T> a) { return *max_element(all(a)); } template<class T> T max(vector<T> a, int n) { return *max_element(a.begin(), a.begin() + min(n, sz(a))); } template<class T> T max(vector<T> a, int s, int n) { return *max_element(a.begin() + s, a.begin() + min(n, sz(a))); } template<typename A, size_t N> A max(A (&a)[N]) { A res = a[0]; rep(i, N)res = max(res, a[i]); return res; } template<typename A, size_t N, size_t O> A max(A (&a)[N][O]) { A res = max(a[0]); rep(i, N)res = max(res, max(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P> A max(A (&a)[N][O][P]) { A res = max(a[0]); rep(i, N)res = max(res, max(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P, size_t Q> A max(A (&a)[N][O][P][Q], const T &v) { A res = max(a[0]); rep(i, N)res = max(res, max(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R> A max(A (&a)[N][O][P][Q][R]) { A res = max(a[0]); rep(i, N)res = max(res, max(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, size_t S> A max(A (&a)[N][O][P][Q][R][S]) { A res = max(a[0]); rep(i, N)res = max(res, max(a[i])); return res; } template<typename A, size_t N> A min(A (&a)[N]) { A res = a[0]; rep(i, N)res = min(res, a[i]); return res; } template<typename A, size_t N, size_t O> A min(A (&a)[N][O]) { A res = min(a[0]); rep(i, N)res = min(res, max(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P> A min(A (&a)[N][O][P]) { A res = min(a[0]); rep(i, N)res = min(res, min(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P, size_t Q> A min(A (&a)[N][O][P][Q], const T &v) { A res = min(a[0]); rep(i, N)res = min(res, min(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R> A min(A (&a)[N][O][P][Q][R]) { A res = min(a[0]); rep(i, N)res = min(res, min(a[i])); return res; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, size_t S> A min(A (&a)[N][O][P][Q][R][S]) { A res = min(a[0]); rep(i, N)res = min(res, min(a[i])); return res; } template<class T> T sum(vector<T> v, int len = -1) { if (len == -1)len = v.size(); T res = 0; chmin(len, v.size()); rep(i, len)res += v[i]; return res; } template<class T> T sum(vector<vector<T>> &v, int h = -1, int w = -1) { if (h == -1)h = v.size(); if (w == -1)w = v[0].size(); T res = 0; chmin(h, v.size()); chmin(w, v[0].size()); rep(i, h)rep(j, w)res += v[i][j]; return res; } P sump(vp &v, int len = -1) { if (len == -1)len = v.size(); P res = {0, 0}; chmin(len, v.size()); rep(i, len) { res.F += v[i].F; res.S += v[i].S; } return res; } ///要素が0の時、返り値は0か1か template<class T> T mul(vector<T> &v, int len = -1) { if (len == -1)len = v.size(); T res = 1; chmin(len, v.size()); rep(i, len)res *= v[i]; return res; } void clear(PQ &q) { while (q.size())q.pop(); } template<class T> void clear(queue<T> &q) { while (q.size())q.pop(); } template<class T> T *negarr(int size) { T *body = (T *) malloc((size * 2 + 1) * sizeof(T)); return body + size; } template<class T> T *negarr2(int h, int w) { double **dummy1 = new double *[2 * h + 1]; double *dummy2 = new double[(2 * h + 1) * (2 * w + 1)]; dummy1[0] = dummy2 + w; for (int i = 1; i <= 2 * h + 1; i++) { dummy1[i] = dummy1[i - 1] + 2 * w + 1; } double **a = dummy1 + h; } template<class T> vector<T> ruiv(vector<T> &a) { vector<T> res(a.size() + 1); rep(i, a.size())res[i + 1] = res[i] + a[i]; return res; } template<class T> vector<T> ruim(vector<T> &a) { vector<T> res(a.size() + 1, 1); rep(i, a.size())res[i + 1] = res[i] * a[i]; return res; } //右から左にかけての半開区間 (-1 n-1] template<class T> T *rrui(vector<T> &a) { int len = a.size(); T *body = (T *) malloc((len + 1) * sizeof(T)); T *res = body + 1; rer(i, len - 1)res[i - 1] = res[i] + a[i]; return res; } //掛け算 template<class T> T *rruim(vector<T> &a) { int len = a.size(); T *body = (T *) malloc((len + 1) * sizeof(T)); T *res = body + 1; res[len - 1] = 1; rer(i, len - 1)res[i - 1] = res[i] * a[i]; return res; } template<class T> void plus(vector<T> &a, T v = 1) { for (auto &&u :a)u += v; } template<class T> void minu(vector<T> &a, T v = 1) { for (auto &&u :a)u -= v; } template<class T> void minus(vector<T> &a, T v = 1) { for (auto &&u :a)u -= v; } inline bool inside(int y, int x, int H, int W) { return y >= 0 && x >= 0 && y < H && x < W; } ll u(ll a) { return a < 0 ? 0 : a; } #define MIN(a) numeric_limits<a>::min() #define MAX(a) numeric_limits<a>::max() ll goldd(ll left, ll right, function<ll(ll)> calc) { double GRATIO = 1.6180339887498948482045868343656; ll lm = left + (ll) ((right - left) / (GRATIO + 1.0)); ll rm = lm + (ll) ((right - lm) / (GRATIO + 1.0)); ll fl = calc(lm); ll fr = calc(rm); while (right - left > 10) { if (fl < fr) { right = rm; rm = lm; fr = fl; lm = left + (ll) ((right - left) / (GRATIO + 1.0)); fl = calc(lm); } else { left = lm; lm = rm; fl = fr; rm = lm + (ll) ((right - lm) / (GRATIO + 1.0)); fr = calc(rm); } } ll minScore = MAX(ll); ll resIndex = left; for (ll i = left; i < right + 1; i++) { ll score = calc(i); if (minScore > score) { minScore = score; resIndex = i; } } return resIndex; } ll goldt(ll left, ll right, function<ll(ll)> calc) { double GRATIO = 1.6180339887498948482045868343656; ll lm = left + (ll) ((right - left) / (GRATIO + 1.0)); ll rm = lm + (ll) ((right - lm) / (GRATIO + 1.0)); ll fl = calc(lm); ll fr = calc(rm); while (right - left > 10) { if (fl > fr) { right = rm; rm = lm; fr = fl; lm = left + (ll) ((right - left) / (GRATIO + 1.0)); fl = calc(lm); } else { left = lm; lm = rm; fl = fr; rm = lm + (ll) ((right - lm) / (GRATIO + 1.0)); fr = calc(rm); } } if (left > right) { ll l = left; left = right; right = l; } ll maxScore = MIN(ll); ll resIndex = left; for (ll i = left; i < right + 1; i++) { ll score = calc(i); if (maxScore < score) { maxScore = score; resIndex = i; } } return resIndex; } template<class T> T min(vector<vector<T>> &a) { T res = MAX(T); rep(i, a.size())chmin(res, *min_element(all(a[i]))); return res; } template<class T> T max(vector<vector<T>> &a) { T res = MIN(T); rep(i, a.size())chmax(res, *max_element(all(a[i]))); return res; } bool bget(ll m, int keta) { return (m >> keta) & 1; } int bget(ll m, int keta, int sinsuu) { m /= (ll) pow(sinsuu, keta); return m % sinsuu; } inline ll bit(int n) { return (1LL << (n)); } inline ll bit(int n, int sinsuu) { return (ll) pow(sinsuu, n); } int bcou(ll m) { return __builtin_popcount(m & 0xFFFFFFFF) + __builtin_popcount(m >> 32); } //初期化は0を渡す ll nextComb(ll &mask, int n, int r) { if (!mask)return mask = (1LL << r) - 1; ll x = mask & -mask; //最下位の1 ll y = mask + x; //連続した下の1を繰り上がらせる ll res = ((mask & ~y) / x >> 1) | y; if (bget(res, n))return mask = 0; else return mask = res; } //n桁以下でビットがr個立っているもののvectorを返す vl bitCombList(int n, int r) { vl res; int m = 0; while (nextComb(m, n, r)) { res.pb(m); } return res; } //大文字小文字を区別する int altoiaZ(char c) { if ('A' <= c && c <= 'Z')return c - 'A'; return c - 'a' + 26; } char itoalaZ(int i) { if (i < 26)return 'A' + i; return 'a' + i - 26; } //aもAも0を返す 基本小文字 int altoi(char c) { if ('A' <= c && c <= 'Z')return c - 'A'; return c - 'a'; } char itoal(int i) { return 'a' + i; } int ctoi(char c) { return c - '0'; } char itoc(int i) { return i + '0'; } int vtoi(vi &v) { int res = 0; if (sz(v) > 18)ole(); rep(i, sz(v)) { res *= 10; res += v[i]; } return res; } vi itov(int i) { vi res; while (i) { res.pb(i % 10); i /= 10; } reverse(res); return res; } vector<vector<int>> ctoi(vector<vector<char>> s, char c) { int n = sz(s), m = sz(s[0]); vector<vector<int>> res(n, vector<int>(m)); rep(i, n)rep(j, m)res[i][j] = s[i][j] == c; return res; } #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ); void compress(vi &a) { vi b; int len = a.size(); for (int i = 0; i < len; ++i) { b.push_back(a[i]); } sort(b); UNIQUE(b); for (int i = 0; i < len; ++i) { a[i] = lower_bound(all(b), a[i]) - b.begin(); } } void compress(int a[], int len) { vi b; for (int i = 0; i < len; ++i) { b.push_back(a[i]); } sort(b); UNIQUE(b); for (int i = 0; i < len; ++i) { a[i] = lower_bound(all(b), a[i]) - b.begin(); } } //要素が見つからなかったときに困る #define binarySearch(a, v) (binary_search(all(a),v)) #define lowerIndex(a, v) (lower_bound(all(a),v)-a.begin()) #define lowerBound(a, v) (*lower_bound(all(a),v)) #define upperIndex(a, v) (upper_bound(all(a),v)-a.begin()) #define upperBound(a, v) (*upper_bound(all(a),v)) #define ans(a) cout<<a<<endl;continue; #define poll(a) q.front();q.pop() #define dpoll(a) q.front();q.pop_front() #define pollLast(a) q.back();q.pop_back() #define pollBack(a) q.back();q.pop_back() template<class T> inline void fin(T s) { cout << s << endl, exit(0); } template<class T> struct edge { int from, to; T cost; int id; int type; edge(int f, int t, T c = 1, int id = -1, int ty = -1) : from(f), to(t), cost(c), id(id), type(ty) {} bool operator<(const edge &b) const { return cost < b.cost; } bool operator>(const edge &b) const { return cost > b.cost; } }; template<typename T> class graph { protected: vector<bool> _used; public : vector<vector<edge<T>>> g; vector<edge<T>> edges; int n, root = -1; graph(int n) : n(n) { g.resize(n), _used.resize(n); } void clear() { g.clear(), edges.clear(); } void resize(int n) { this->n = n; g.resize(n); _used.resize(n); } int size() { return g.size(); } bool isleaf(int v) { assert(root != -1); return g[v].size() == 1 && g[v][0].from != root; } vector<edge<T> > &operator[](int i) { return g[i]; } virtual void add(int from, int to, T cost, int id, int ty) = 0; virtual bool used(edge<T> &e) = 0; virtual bool used(int id) = 0; virtual void del(edge<T> &e) = 0; virtual void del(int id) = 0; }; template<class T=int> class undigraph : public graph<T> { public: using graph<T>::g; using graph<T>::n; using graph<T>::edges; using graph<T>::_used; undigraph(int n) : graph<T>(n) { } void add(int f, int t, T cost = 1, int id = -1, int ty = -1) { if (!(0 <= f && f < n && 0 <= t && t < n))ole(); if (id == -1)id = edges.size(); g[f].emplace_back(f, t, cost, id, ty); g[t].emplace_back(t, f, cost, id + 1, ty); edges.emplace_back(f, t, cost, id, ty); edges.emplace_back(t, f, cost, id + 1, ty); } void add(edge<T> &e) { int f = e.from, t = e.to, ty = e.type; T cost = e.cost; add(f, t, cost, ty); } bool used(edge<T> &e) { return _used[e.id]; } bool used(int id) { return _used[id]; } void del(edge<T> &e) { _used[e.id] = _used[e.id ^ 1] = 1; } void del(int id) { _used[id] = _used[id ^ 1] = 1; } }; template<typename T =ll> class digraph : public graph<T> { public: using graph<T>::g; using graph<T>::n; using graph<T>::edges; using graph<T>::_used; digraph(int n) : graph<T>(n) {} void add(int f, int t, T cost = 1, int id = -1, int ty = -1) { if (!(0 <= f && f < n && 0 <= t && t < n))ole(); if (id == -1)id = edges.size(); g[f].emplace_back(f, t, cost, id, ty); edges.emplace_back(f, t, cost, id, ty); } bool used(edge<T> &e) { return _used[e.id]; } bool used(int id) { return _used[id]; } void del(edge<T> &e) { _used[e.id] = _used[e.id ^ 1] = 1; } void del(int id) { _used[id] = _used[id ^ 1] = 1; } }; template<class T> bool nibu(const graph<T> &g) { if (g.edges.size() == 0)return true; UnionFind uf(g.n * 2); for (auto &&e :g.edges)uf.unite(e.from, e.to + g.n), uf.unite(e.from + g.n, e.to); rep(i, g.n)if (uf.same(i, i + g.n))return 0; return 1; } //二部グラフを色分けした際の頂点数を返す template<class T> vp nibug(graph<T> &g) { vp cg; if (!nibu(g))ole(); int _n = g.size(); vb _was(_n); queue<P> q; rep(i, _n) { if (_was[i])continue; q.push(mp(i, 1)); _was[i] = 1; int red = 0; int coun = 0; while (q.size()) { int now = q.front().F; int col = q.front().S; red += col; coun++; q.pop(); forg(gi, g[now]) { if (_was[t])continue; q.push(mp(t, col ^ 1)); _was[t] = 1; } } cg.push_back(mp(red, coun - red)); } return cg; } template<class T> vector<T> dijkstra(const graph<T> &g, int s) { if (!(0 <= s && s < g.n))ole(); T initValue = MAX(T); vector<T> dis(g.n, initValue); priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> q; dis[s] = 0; q.emplace(0, s); while (q.size()) { T nowc = q.top().F; int i = q.top().S; q.pop(); if (dis[i] != nowc)continue; for (auto &&e : g.g[i]) { int to = e.to; T cost = nowc + e.cost; if (dis[to] > cost) { dis[to] = cost; q.emplace(dis[to], to); } } } //たどり着かないなら-1 for (auto &&d :dis) if (d == initValue)d = -1; return dis; } //機能拡張 vp vtop(vi &a, vi &b) { vp res(sz(a)); rep(i, sz(a))res[i] = mp(a[i], b[i]); return res; } void ptov(vp &p, vi &a, vi &b) { a.resize(sz(p)); b.resize(sz(p)); rep(i, sz(p))a[i] = p[i].F, b[i] = p[i].S; } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc> operator+(const basic_string<_CharT, _Traits, _Alloc> &__lhs, const int __rv) { basic_string<_CharT, _Traits, _Alloc> __str(__lhs); __str.append(to_string(__rv)); return __str; } template<typename _CharT, typename _Traits, typename _Alloc> void operator+=(basic_string<_CharT, _Traits, _Alloc> &__lhs, const int __rv) { __lhs += to_string(__rv); } template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc> operator+(const basic_string<_CharT, _Traits, _Alloc> &__lhs, const signed __rv) { basic_string<_CharT, _Traits, _Alloc> __str(__lhs); __str.append(to_string(__rv)); return __str; } template<typename _CharT, typename _Traits, typename _Alloc> void operator+=(basic_string<_CharT, _Traits, _Alloc> &__lhs, const signed __rv) { __lhs += to_string(__rv); } template<class T, class U> void operator+=(queue<T> &a, U v) { a.push(v); } template<class T, class U> priority_queue<T, vector<T>, greater<T> > &operator+=(priority_queue<T, vector<T>, greater<T> > &a, U v) { a.push(v); return a; } template<class T, class U> priority_queue<T> &operator+=(priority_queue<T> &a, U v) { a.push(v); return a; } template<class T, class U> set<T> &operator+=(set<T> &a, U v) { a.insert(v); return a; } template<class T, class U> set<T, greater<T>> &operator+=(set<T, greater<T>> &a, U v) { a.insert(v); return a; } template<class T, class U> vector<T> &operator+=(vector<T> &a, U v) { a.pb(v); return a; } template<class T> vector<T> &operator+=(vector<T> &a, vector <T> &b) { a.pb(b); return a; } template<class T, class U> vector<T> &operator+=(vector<T> &a, initializer_list<U> v) { for (auto &&va :v)a.pb(va); return a; } template<class T> vector<T> &operator-=(vector<T> &a, vector <T> &b) { if (sz(a) != sz(b))ole(); rep(i, sz(a))a[i] -= b[i]; return a; } template<class T> vector<T> &operator-(vector<T> &a, vector <T> &b) { if (sz(a) != sz(b))ole(); vector<T> res; rep(i, sz(a))res[i] = a[i] - b[i]; return res; } template<typename T> void remove(vector<T> &v, unsigned int i) { v.erase(v.begin() + i); } template<typename T> void remove(vector<T> &v, unsigned int s, unsigned int e) { v.erase(v.begin() + s, v.begin() + e); } template<typename T> void removen(vector<T> &v, unsigned int s, unsigned int n) { v.erase(v.begin() + s, v.begin() + s + n); } template<typename T> void erase(vector<T> &v, unsigned int i) { v.erase(v.begin() + i); } template<typename T> void erase(vector<T> &v, unsigned int s, unsigned int e) { v.erase(v.begin() + s, v.begin() + e); } template<typename T> void erasen(vector<T> &v, unsigned int s, unsigned int n) { v.erase(v.begin() + s, v.begin() + s + n); } template<typename T> void insert(vector<T> &v, unsigned int i, T t) { v.insert(v.begin() + i, t); } template<typename T> void insert(vector<T> &v, unsigned int i, vector<T> list) { for (auto &&va :list)v.insert(v.begin() + i++, va); } template<typename T, typename U> void insert(vector<T> &v, initializer_list<U> list) { for (auto &&va :list)v.pb(va); } template<typename T, typename U> void insert(vector<T> &v, unsigned int i, initializer_list<U> list) { for (auto &&va :list)v.insert(v.begin() + i++, va); } template<typename T> void insert(set<T> &v, vector<T> list) { for (auto &&va :list)v.insert(va); } template<typename T> void insert(set<T> &v, initializer_list<T> list) { for (auto &&va :list)v.insert(va); } ll ma = numeric_limits<ll>::min(); ll mi = numeric_limits<ll>::max(); //閉路がなければtrue bool topo(vi &res, digraph<int> &g) { int n = g.g.size(); vi nyu(n); rep(i, n)for (auto &&e :g[i])nyu[e.to]++; queue<int> st; rep(i, n)if (nyu[i] == 0)st.push(i); while (st.size()) { int v = st.front(); st.pop(); res.pb(v); fora(e, g[v]) if (--nyu[e.to] == 0)st.push(e.to); } return res.size() == n; } //辞書順最小トポロジカルソート bool topos(vi &res, digraph<int> &g) { int n = g.g.size(); vi nyu(n); rep(i, n)for (auto &&e :g[i])nyu[e.to]++; //小さい順 priority_queue<int, vector<int>, greater<int> > q; rep(i, n)if (nyu[i] == 0)q.push(i); while (q.size()) { int i = q.top(); q.pop(); res.pb(i); fora(e, g[i])if (--nyu[e.to] == 0)q.push(e.to); } return res.size() == n; } vector<string> split(const string a, const char deli) { string b = a + deli; int l = 0, r = 0, n = b.size(); vector<string> res; rep(i, n) { if (b[i] == deli) { r = i; if (l < r)res.push_back(b.substr(l, r - l)); l = i + 1; } } return res; } vector<string> split(const string a, const string deli) { string b = a + deli; int l = 0, r = 0, n = b.size(), dn = deli.size(); vector<string> res; rep(i, n) { if (i + dn <= n && b.substr(i, i + dn) == deli) { r = i; if (l < r)res.push_back(b.substr(l, r - l)); i += dn - 1; l = i + 1; } } return res; } void yn(bool a) { if (a)cout << "yes" << endl; else cout << "no" << endl; } void Yn(bool a) { if (a)cout << "Yes" << endl; else cout << "No" << endl; } void YN(bool a) { if (a)cout << "YES" << endl; else cout << "NO" << endl; } void fyn(bool a) { if (a)cout << "yes" << endl; else cout << "no" << endl; exit(0); } void fYn(bool a) { if (a)cout << "Yes" << endl; else cout << "No" << endl; exit(0); } void fYN(bool a) { if (a)cout << "YES" << endl; else cout << "NO" << endl; exit(0); } int n, m, k, d, H, W, x, y, z, q; int cou; vi a, b, c; vvi (s, 0, 0); vvc (ba, 0, 0); vp p; #define chtMin 0 #define chtMax 1 class convexHullDynamic { typedef long long coef_t; typedef long long coord_t; typedef long long val_t; /* * Line 'y=a*x+b' represented by 2 coefficients 'a' and 'b' * and 'xLeft' which is intersection with previous line in hull(first line has -INF) */ private: struct Line { coef_t a, b; double xLeft; enum Type { line, maxQuery, minQuery } type; coord_t val; explicit Line(coef_t aa = 0, coef_t bb = 0) : a(aa), b(bb), xLeft(-INFINITY), type(Type::line), val(0) {} val_t valueAt(coord_t x) const { return a * x + b; } friend bool areParallel(const Line &l1, const Line &l2) { return l1.a == l2.a; } friend double intersectX(const Line &l1, const Line &l2) { return areParallel(l1, l2) ? INFINITY : 1.0 * (l2.b - l1.b) / (l1.a - l2.a); } bool operator<(const Line &l2) const { if (l2.type == line) return this->a < l2.a; if (l2.type == maxQuery) return this->xLeft < l2.val; if (l2.type == minQuery) return this->xLeft > l2.val; else return 0;//謎 } }; bool isMax; //whether or not saved envelope is top(search of max value) public: std::set<Line> hull; //envelope itself private: /* * INFO: Check position in hull by iterator * COMPLEXITY: O(1) */ bool hasPrev(std::set<Line>::iterator it) { return it != hull.begin(); } bool hasNext(std::set<Line>::iterator it) { return it != hull.end() && std::next(it) != hull.end(); } /* * INFO: Check whether line l2 is irrelevant * NOTE: Following positioning in hull must be true * l1 is next left to l2 * l2 is right between l1 and l3 * l3 is next right to l2 * COMPLEXITY: O(1) */ bool irrelevant(const Line &l1, const Line &l2, const Line &l3) { return intersectX(l1, l3) <= intersectX(l1, l2); } bool irrelevant(std::set<Line>::iterator it) { return hasPrev(it) && hasNext(it) && (isMax && irrelevant(*std::prev(it), *it, *std::next(it)) || !isMax && irrelevant(*std::next(it), *it, *std::prev(it))); } /* * INFO: Updates 'xValue' of line pointed by iterator 'it' * COMPLEXITY: O(1) */ std::set<Line>::iterator updateLeftBorder(std::set<Line>::iterator it) { if (isMax && !hasPrev(it) || !isMax && !hasNext(it)) return it; double val = intersectX(*it, isMax ? *std::prev(it) : *std::next(it)); Line buf(*it); it = hull.erase(it); buf.xLeft = val; it = hull.insert(it, buf); return it; } public: explicit convexHullDynamic(signed isMax) : isMax(isMax) {} /* * INFO: Adding line to the envelope * Line is of type 'y=a*x+b' represented by 2 coefficients 'a' and 'b' * COMPLEXITY: Adding N lines(N calls of function) takes O(N*log N) time */ void add(coef_t a, coef_t b) { //find the place where line will be inserted in set Line l3 = Line(a, b); auto it = hull.lower_bound(l3); //if parallel line is already in set, one of them becomes irrelevant if (it != hull.end() && areParallel(*it, l3)) { if (isMax && it->b < b || !isMax && it->b > b) it = hull.erase(it); else return; } //try to insert it = hull.insert(it, l3); if (irrelevant(it)) { hull.erase(it); return; } //remove lines which became irrelevant after inserting line while (hasPrev(it) && irrelevant(std::prev(it))) hull.erase(std::prev(it)); while (hasNext(it) && irrelevant(std::next(it))) hull.erase(std::next(it)); //refresh 'xLine' it = updateLeftBorder(it); if (hasPrev(it)) updateLeftBorder(std::prev(it)); if (hasNext(it)) updateLeftBorder(std::next(it)); } val_t get(coord_t x) const { Line q; q.val = x; q.type = isMax ? Line::Type::maxQuery : Line::Type::minQuery; auto bestLine = hull.lower_bound(q); if (isMax) --bestLine; val_t res = bestLine->valueAt(x); return res; } }; void solve() { int a, b, w; vi d; cin >> n >> a >> b >> w; nao(d, n); d += 0; convexHullDynamic cht(chtMin); //i日目に食べる際の答え vi dp(n + 2);//1 rep(i, 1, n + 2) { int j = i - 1; cht.add(-j * b, dp[j] + (pow(j) + j) * b / 2 + a * j); dp[i] = cht.get(i) + (pow(i) - i) * b / 2 - a * i + a + d[i]; } //n+1日目に無を食べる最適が答え cout << w + dp[n + 1] << endl; } int my(int n, vi a) { return 0; } int sister(int n, vi a) { return 0; } signed main() { solve(); #define _arg n,a //cin>>n; //na(a,n); //my(_arg); //cout << my(_arg) << endl; #ifdef _DEBUG bool bad = 0; for (int i = 0, ok = 1; i < k5 && ok; i++) { int n = rand(1, 3); vi a = ranv(m, 1, 10); int myres = my(_arg); int res = sister(_arg); ok = myres == res; if (!ok) { cout << n << endl; cout << a << endl; cout << "正解 : " << res << endl; cout << "出力 : " << myres << endl; bad = 1; break; } } // if (!bad)cout << "お兄ちゃんすごい!天才!!" << endl; #endif return 0; };