結果

問題 No.390 最長の数列
ユーザー mdj982mdj982
提出日時 2019-03-05 01:58:04
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 279 ms / 5,000 ms
コード長 4,572 bytes
コンパイル時間 1,975 ms
コンパイル使用メモリ 185,500 KB
実行使用メモリ 8,068 KB
最終ジャッジ日時 2024-06-23 14:07:46
合計ジャッジ時間 4,587 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
7,272 KB
testcase_01 AC 5 ms
7,264 KB
testcase_02 AC 5 ms
7,180 KB
testcase_03 AC 5 ms
7,092 KB
testcase_04 AC 5 ms
7,168 KB
testcase_05 AC 279 ms
7,888 KB
testcase_06 AC 236 ms
8,068 KB
testcase_07 AC 5 ms
7,168 KB
testcase_08 AC 4 ms
7,104 KB
testcase_09 AC 5 ms
7,108 KB
testcase_10 AC 268 ms
7,936 KB
testcase_11 AC 265 ms
7,984 KB
testcase_12 AC 263 ms
7,936 KB
testcase_13 AC 183 ms
7,784 KB
testcase_14 AC 222 ms
7,984 KB
testcase_15 AC 5 ms
7,156 KB
testcase_16 AC 5 ms
7,264 KB
testcase_17 AC 18 ms
7,228 KB
testcase_18 AC 24 ms
7,168 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using ll = long long int;
using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
using P = pair<int, int>;
using Pll = pair<ll, ll>;
using cdouble = complex<double>;

const double eps = 1e-9;
const double INFD = numeric_limits<double>::infinity();
const double PI = 3.14159265358979323846;
#define Loop(i, n) for(int i = 0; i < (int)n; i++)
#define Loopll(i, n) for(ll i = 0; i < (ll)n; i++)
#define Loop1(i, n) for(int i = 1; i <= (int)n; i++)
#define Loopll1(i, n) for(ll i = 1; i <= (ll)n; i++)
#define Loopr(i, n) for(int i = (int)n - 1; i >= 0; i--)
#define Looprll(i, n) for(ll i = (ll)n - 1; i >= 0; i--)
#define Loopr1(i, n) for(int i = (int)n; i >= 1; i--)
#define Looprll1(i, n) for(ll i = (ll)n; i >= 1; i--)
#define Foreach(buf, container) for(auto buf : container)
#define Loopdiag(i, j, h, w, sum) for(int i = ((sum) >= (h) ? (h) - 1 : (sum)), j = (sum) - i; i >= 0 && j < (w); i--, j++)
#define Loopdiagr(i, j, h, w, sum) for(int j = ((sum) >= (w) ? (w) - 1 : (sum)), i = (sum) - j; j >= 0 && i < (h); j--, i++)
#define Loopdiagsym(i, j, h, w, gap) for (int i = ((gap) >= 0 ? (gap) : 0), j = i - (gap); i < (h) && j < (w); i++, j++)
#define Loopdiagsymr(i, j, h, w, gap) for (int i = ((gap) > (h) - (w) - 1 ? (h) - 1 : (w) - 1 + (gap)), j = i - (gap); i >= 0 && j >= 0; i--, j--)
#define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++)
#define printv(vector) Loop(ex_i, vector.size()) { cout << vector[ex_i] << " "; } cout << endl;
#define printmx(matrix) Loop(ex_i, matrix.size()) { Loop(ex_j, matrix[ex_i].size()) { cout << matrix[ex_i][ex_j] << " "; } cout << endl; }
#define quickio() ios::sync_with_stdio(false); cin.tie(0);
#define bitmanip(m,val) static_cast<bitset<(int)m>>(val)
#define Comp(type_t) bool operator<(const type_t &another) const
#define fst first
#define snd second
bool nearlyeq(double x, double y) { return abs(x - y) < eps; }
bool inrange(int x, int t) { return x >= 0 && x < t; }
bool inrange(vi xs, int t) { Foreach(x, xs) if (!(x >= 0 && x < t)) return false; return true; }
ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); }
ll floorsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (m * m <= x ? 0 : -1); }
ll ceilsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (x <= m * m ? 0 : 1); }
ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); }
ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); }
ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); }
ll lcm(ll m, ll n) { return m * n / gcd(m, n); }

/*******************************************************/


// n = 1.5e7 -> 80 ms
vll list_prime_until(ll n) {
	vll ret;
	vector<bool> is_prime(n + 1, true);
	if (is_prime.size() > 0) is_prime[0] = false;
	if (is_prime.size() > 1) is_prime[1] = false;
	Loop(i, n + 1) {
		if (is_prime[i]) {
			ret.push_back(i);
			ll k = (ll)i * i;
			while (k < n + 1) {
				is_prime[int(k)] = false;
				k += i;
			}
		}
	}
	return ret;
}

// prime_list has to be generated by list_prime_until(>=sqrt(n))
vector<Pll> prime_factorize(ll n, const vll &prime_list) {
	vector<Pll> ret;
	Loop(i, prime_list.size()) {
		if (n == 1) break;
		while (n % prime_list[i] == 0) {
			if (ret.size() == 0 || ret.back().first != prime_list[i]) {
				ret.push_back({ prime_list[i], 0 });
			}
			ret.back().second++;
			n /= prime_list[i];
		}
	}
	if (n != 1) ret.push_back({ n, 1 });
	return ret;
}

vll divisors(const vector<Pll> factors) {
	queue<ll> que;
	que.push(1);
	Loop(i, factors.size()) {
		ll x = factors[i].fst, d = factors[i].snd;
		vll a(d + 1, 1); Loop1(j, d) a[j] = a[j - 1] * x;
		int m = int(que.size());
		Loop(j, m) {
			ll y = que.front(); que.pop();
			Loop(k, d + 1) que.push(y * a[k]);
		}
	}
	int m = int(que.size());
	vll ret(m);
	Loop(i, m) {
		ret[i] = que.front(); que.pop();
	}
	sort(ret.begin(), ret.end());
	return ret;
}

int main() {
	int n; cin >> n;
	vll a(n); Loop(i, n) cin >> a[i];
	sort(a.begin(), a.end());
	vi dp(int(1e6) + 1);
	if (a[0] == 1) dp[1] = 1;
	vll primes = list_prime_until(int(1e3));
	Loop(i, n) {
		vector<Pll> facs = prime_factorize(a[i], primes);
		vll divs = divisors(facs);
		Loop(j, divs.size()) {
			if (divs[j] == a[i]) continue;
			dp[a[i]] = max(dp[a[i]], dp[divs[j]] + 1);
		}
	}
	int ans = 0;
	Loop(i, dp.size()) {
		ans = max(ans, dp[i]);
	}
	cout << ans << endl;
}
0