結果
| 問題 |
No.458 異なる素数の和
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-03-05 16:52:27 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 83 ms / 2,000 ms |
| コード長 | 3,584 bytes |
| コンパイル時間 | 1,625 ms |
| コンパイル使用メモリ | 175,896 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-23 14:24:18 |
| 合計ジャッジ時間 | 5,174 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using ll = long long int;
using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
using P = pair<int, int>;
using Pll = pair<ll, ll>;
using cdouble = complex<double>;
const double eps = 1e-9;
const double INFD = numeric_limits<double>::infinity();
const double PI = 3.14159265358979323846;
#define Loop(i, n) for(int i = 0; i < (int)n; i++)
#define Loopll(i, n) for(ll i = 0; i < (ll)n; i++)
#define Loop1(i, n) for(int i = 1; i <= (int)n; i++)
#define Loopll1(i, n) for(ll i = 1; i <= (ll)n; i++)
#define Loopr(i, n) for(int i = (int)n - 1; i >= 0; i--)
#define Looprll(i, n) for(ll i = (ll)n - 1; i >= 0; i--)
#define Loopr1(i, n) for(int i = (int)n; i >= 1; i--)
#define Looprll1(i, n) for(ll i = (ll)n; i >= 1; i--)
#define Foreach(buf, container) for(auto buf : container)
#define Loopdiag(i, j, h, w, sum) for(int i = ((sum) >= (h) ? (h) - 1 : (sum)), j = (sum) - i; i >= 0 && j < (w); i--, j++)
#define Loopdiagr(i, j, h, w, sum) for(int j = ((sum) >= (w) ? (w) - 1 : (sum)), i = (sum) - j; j >= 0 && i < (h); j--, i++)
#define Loopdiagsym(i, j, h, w, gap) for (int i = ((gap) >= 0 ? (gap) : 0), j = i - (gap); i < (h) && j < (w); i++, j++)
#define Loopdiagsymr(i, j, h, w, gap) for (int i = ((gap) > (h) - (w) - 1 ? (h) - 1 : (w) - 1 + (gap)), j = i - (gap); i >= 0 && j >= 0; i--, j--)
#define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++)
#define printv(vector) Loop(ex_i, vector.size()) { cout << vector[ex_i] << " "; } cout << endl;
#define printmx(matrix) Loop(ex_i, matrix.size()) { Loop(ex_j, matrix[ex_i].size()) { cout << matrix[ex_i][ex_j] << " "; } cout << endl; }
#define quickio() ios::sync_with_stdio(false); cin.tie(0);
#define bitmanip(m,val) static_cast<bitset<(int)m>>(val)
#define Comp(type_t) bool operator<(const type_t &another) const
#define fst first
#define snd second
bool nearlyeq(double x, double y) { return abs(x - y) < eps; }
bool inrange(int x, int t) { return x >= 0 && x < t; }
bool inrange(vi xs, int t) { Foreach(x, xs) if (!(x >= 0 && x < t)) return false; return true; }
ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); }
ll floorsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (m * m <= x ? 0 : -1); }
ll ceilsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (x <= m * m ? 0 : 1); }
ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); }
ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); }
ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); }
ll lcm(ll m, ll n) { return m * n / gcd(m, n); }
/*******************************************************/
// n = 1.5e7 -> 80 ms
vll list_prime_until(ll n) {
vll ret;
vector<bool> is_prime(n + 1, true);
if (is_prime.size() > 0) is_prime[0] = false;
if (is_prime.size() > 1) is_prime[1] = false;
Loop(i, n + 1) {
if (is_prime[i]) {
ret.push_back(i);
ll k = (ll)i * i;
while (k < n + 1) {
is_prime[int(k)] = false;
k += i;
}
}
}
return ret;
}
int main() {
vll primes = list_prime_until(20000);
int n = 20001;
vll dp(n, LLONG_MIN);
dp[0] = 0;
vll dpc;
Loop(i, primes.size()) {
dpc = dp;
dp = vll(n, LLONG_MIN);
Loop(j, n) {
dp[j] = dpc[j];
if (inrange(j - primes[i], n)) {
dp[j] = max(dp[j], dpc[j - primes[i]] + 1);
}
}
}
ll x; cin >> x;
if (dp[x] < 0) cout << -1 << endl;
else cout << dp[x] << endl;
}