結果

問題 No.766 金魚すくい
ユーザー jell
提出日時 2019-03-06 12:49:41
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 35 ms / 1,500 ms
コード長 11,457 bytes
コンパイル時間 7,872 ms
コンパイル使用メモリ 371,600 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-23 14:32:51
合計ジャッジ時間 10,565 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 42
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdlib.h>
#include <assert.h>
#include <iostream>
#include <algorithm>
#include <functional>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <cmath>
#include <complex>
#include <iomanip>
#include <bitset>
#include <random>
using namespace std;
using i64 = int_fast64_t;
using ui64 = uint_fast64_t;
using db = long double;
using pii = pair<int, int>;
using pli = pair<int_fast64_t, int>;
using pll = pair<int_fast64_t, int_fast64_t>;
using pdi = pair<double, int>;
template <class T> using vct = vector<T>;
template <class T> using heap = priority_queue<T>;
template <class T> using minheap = priority_queue<T, vector<T>, greater<T>>;
template <class T> constexpr T inf = numeric_limits<T>::max() / 4 - 1;
constexpr int dx[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};
constexpr int dy[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};
constexpr long double gold = 1.618033988;
constexpr long double eps = 1e-15;
#define mod 1000000007LL
#define stdout_precision 10
#define stderr_precision 2
#define itr(i,v) for(auto i = begin(v); i != end(v); ++i)
#define ritr(i,v) for(auto i = rbegin(v); i != rend(v); ++i)
#define rep(i,n) for(int i = 0; i < (n); ++i)
#define rrep(i,n) for(int i = (n) - 1; i >= 0; --i)
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)
#define fir first
#define sec second
#define fro front
#define bac back
#define u_map unordered_map
#define u_set unordered_set
#define l_bnd lower_bound
#define u_bnd upper_bound
#define rsz resize
#define ers erase
#define emp emplace
#define emf emplace_front
#define emb emplace_back
#define pof pop_front
#define pob pop_back
#define mkp make_pair
#define mkt make_tuple
#define popcnt __builtin_popcount
struct setupper {
setupper() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::cerr.tie(nullptr);
std::cout << fixed << setprecision(stdout_precision);
std::cerr << fixed << setprecision(stderr_precision);
// #ifdef LOCAL
// std::cerr << "\n---stderr---\n";
// auto print_atexit = []() {
// std::cerr << "Exec time : " << clock() / (double)CLOCKS_PER_SEC * 1000.0 << "ms\n";
// std::cerr << "------------\n";
// };
// atexit((void(*)())print_atexit);
// #endif
}
} setupper_;
namespace std {
template <class T> void hash_combine(size_t &seed, T const &key) {
seed ^= hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
template <class T, class U> struct hash<pair<T,U>> {
size_t operator()(pair<T,U> const &pr) const
{
size_t seed = 0;
hash_combine(seed,pr.first);
hash_combine(seed,pr.second);
return seed;
}
};
template <class Tup, size_t index = tuple_size<Tup>::value - 1> struct hashval_calc {
static void apply(size_t& seed, Tup const& tup) {
hashval_calc<Tup, index - 1>::apply(seed, tup);
hash_combine(seed,get<index>(tup));
}
};
template <class Tup> struct hashval_calc<Tup,0> {
static void apply(size_t& seed, Tup const& tup) {
hash_combine(seed,get<0>(tup));
}
};
template <class ...T> struct hash<tuple<T...>> {
size_t operator()(tuple<T...> const& tup) const
{
size_t seed = 0;
hashval_calc<tuple<T...>>::apply(seed,tup);
return seed;
}
};
}
template <class T, class U> istream &operator>> (istream &s, pair<T,U> &p) { return s >> p.first >> p.second; }
template <class T, class U> ostream &operator<< (ostream &s, const pair<T,U> p) { return s << p.first << " " << p.second; }
template <class T> ostream &operator<< (ostream &s, const vector<T> &v) {
for(size_t i = 0; i < v.size(); ++i) s << (i ? " " : "") << v[i];
return s;
}
#define dump(...) cerr << " [ " << __LINE__ << " : " << __FUNCTION__ << " ] " << #__VA_ARGS__ << " : ";\
dump_func(__VA_ARGS__)
template <class T> void dump_func(T x) { cerr << x << '\n'; }
template <class T,class ...Rest> void dump_func(T x, Rest ... rest) { cerr << x << ","; dump_func(rest...); }
template <class T = int> T read() { T x; return cin >> x, x; }
template <class T> void write(T x) { cout << x << '\n'; }
template <class T, class ...Rest> void write(T x, Rest ... rest) { cout << x << ' '; write(rest...); }
void writeln() {}
template <class T, class ...Rest> void writeln(T x, Rest ... rest) { cout << x << '\n'; writeln(rest...); }
#define esc(...) writeln(__VA_ARGS__), exit(0)
namespace updater {
template <class T> static void add(T &x, const T &y) { x += y; }
template <class T> static void ext_add(T &x, const T &y, size_t w) { x += y * w; }
template <class T> static void mul(T &x, const T &y) { x *= y; }
template <class T> static void ext_mul(T &x, const T &y, size_t w) { x *= (T)pow(y,w); }
template <class T> static bool chmax(T &x, const T &y) { return x < y ? x = y,true : false; }
template <class T> static bool chmin(T &x, const T &y) { return x > y ? x = y,true : false; }
};
using updater::chmax;
using updater::chmin;
template <class T> T minf(const T &x, const T &y) { return min(x,y); }
template <class T> T mixf(const T &x, const T &y) { return max(x,y); }
bool bit(i64 n, uint8_t e) { return (n >> e) & 1; }
i64 mask(i64 n, uint8_t e) { return n & ((1 << e) - 1); }
int ilog(uint64_t x, uint64_t b = 2) { return x ? 1 + ilog(x / b,b) : -1; }
template <class F> i64 binry(i64 ok, i64 ng, const F &fn) {
while (abs(ok - ng) > 1) {
i64 mid = (ok + ng) / 2;
(fn(mid) ? ok : ng) = mid;
}
return ok;
}
template <class A, size_t N, class T> void init(A (&array)[N], const T &val) { fill((T*)array,(T*)(array + N),val); }
template <class A> void cmprs(A ary[], size_t n) {
vector<A> tmp(ary,ary + n);
tmp.erase(unique(begin(tmp),end(tmp)), end(tmp));
for(A *i = ary; i != ary + n; ++i) *i = l_bnd(all(tmp),*i) - begin(tmp);
}
template <class T> void cmprs(vector<T> &v) {
vector<T> tmp = v; sort(begin(tmp),end(tmp));
tmp.erase(unique(begin(tmp),end(tmp)), end(tmp));
for(auto i = begin(v); i != end(v); ++i) *i = l_bnd(all(tmp),*i) - begin(tmp);
}
template <class F> void for_subset(uint_fast64_t s, const F &fn) {
uint_fast64_t tmp = s;
do { fn(tmp); } while((--tmp &= s) != s);
}
namespace Calcfn {
#ifndef mod
#define mod 1000000007LL
#endif
struct Modint {
int x;
constexpr Modint() : x(0) {}
constexpr Modint(int_fast64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
constexpr Modint &operator+=(const Modint &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
constexpr Modint &operator-=(const Modint &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
constexpr Modint &operator*=(const Modint &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
constexpr Modint &operator/=(const Modint &p) {
*this *= inverse(p);
return *this;
}
constexpr Modint operator-() { return Modint(-x); }
constexpr Modint operator+(const Modint &p) { return Modint(*this) += p; }
constexpr Modint operator-(const Modint &p) { return Modint(*this) -= p; }
constexpr Modint operator*(const Modint &p) { return Modint(*this) *= p; }
constexpr Modint operator/(const Modint &p) { return Modint(*this) /= p; }
constexpr bool operator==(const Modint &p) { return x == p.x; }
constexpr bool operator!=(const Modint &p) { return x != p.x; }
constexpr bool operator!() { return !x; }
constexpr bool operator>(const Modint &p) { return x > p.x; }
constexpr bool operator<(const Modint &p) { return x < p.x; }
constexpr bool operator>=(const Modint &p) { return x >= p.x; }
constexpr bool operator<=(const Modint &p) { return x <= p.x; }
constexpr static Modint inverse(const Modint &p) {
int a = p.x, b = mod, u = 1, v = 0;
while(b > 0) {
int t = a / b;
a -= t * b;
a ^= b ^= a ^= b;
u -= t * v;
u ^= v ^= u ^= v;
}
return Modint(u);
}
constexpr static Modint pow(Modint p, uint_fast64_t e) {
if(!e) return 1;
if(!p) return 0;
return pow(p * p, e >> 1) * (e & 1 ? p : 1);
}
friend ostream &operator<<(ostream &s, const Modint &p) { return s << p.x; }
friend istream &operator>>(istream &s, Modint &p) {
uint_fast64_t x;
p = Modint((s >> x,x));
return s;
}
};
constexpr static unsigned int N = 210000;
struct impl {
uint_fast64_t fact_[N + 1],invfact_[N + 1],inv_[N + 1];
constexpr impl() : fact_(),invfact_(),inv_() {
fact_[0] = 1;
for(int i = 1; i <= N; ++i) fact_[i] = fact_[i - 1] * i % mod;
inv_[1] = 1;
for(int i = 2; i <= N; ++i) inv_[i] = mod - inv_[mod % i] * (mod / i) % mod;
invfact_[0] = 1;
for(int i = 1; i <= N; ++i) invfact_[i] = invfact_[i - 1] * inv_[i] % mod;
}
};
constexpr static impl impl_exe;
constexpr static Modint fact(int x) {
return x >= 0 ? impl_exe.fact_[x] : 0;
}
constexpr static Modint invfact(int x) {
return x >= 0 ? impl_exe.invfact_[x] : 0;
}
constexpr static Modint comb(int x, int y) {
return fact(x) * invfact(y) * invfact(x - y);
}
constexpr static Modint perm(int x, int y) {
return comb(x,y) * fact(y);
}
constexpr static int_fast64_t gcd(int_fast64_t a, int_fast64_t b) {
if(!b) return a > 0 ? a : -a; return gcd(b, a % b);
}
constexpr static int_fast64_t lcm(int_fast64_t a, int_fast64_t b) {
if(a | b) return a / gcd(a, b) * b; return 0;
}
constexpr static int_fast64_t ext_gcd(int_fast64_t a, int_fast64_t b, int_fast64_t &x, int_fast64_t &y) {
int_fast64_t d = a;
if (b) d = ext_gcd(b, a % b, y, x), y -= (a / b) * x;
else x = 1, y = 0;
return d;
}
constexpr static Modint modinv(int_fast64_t x) {
int_fast64_t z = 0,y = 0;
ext_gcd(x,mod,z,y);
return Modint(z);
}
constexpr static Modint modpow(Modint x, int_fast64_t e) {
if(!e) return 1;
if(!x) return 0;
return modpow(x * x, e >> 1) * (e & 1 ? x : 1);
}
}
using Calcfn::Modint;
using Calcfn::fact;
using Calcfn::invfact;
using Calcfn::comb;
using Calcfn::gcd;
int n,m,p;
int a[100010];
Modint suc,fai,ans;
Modint prob[100010],suc_pw[100010],fai_pw[100010];
signed main() {
cin>>n>>m>>p;
int mot=100;
suc=((Modint)mot-(Modint)p)/(Modint)mot;
fai=(Modint)p/(Modint)mot;
suc_pw[0]=fai_pw[0]=1;
rep(i,1e5) suc_pw[i+1]=suc_pw[i]*suc;
rep(i,1e5) fai_pw[i+1]=fai_pw[i]*fai;
rep(i,n) {
if(i) prob[i+1]=(prob[i]-fai_pw[m]*suc_pw[i]*comb(i+m-1,i))*suc/(-fai+1);
else prob[i+1]=(prob[i]+1-fai_pw[m]*suc_pw[i]*comb(i+m-1,i))*suc/(-fai+1);
}
rep(i,n) cin>>a[i];
sort(a,a+n,greater<int>());
rep(i,n) { ans+=prob[i+1]*a[i]; }
writeln(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0