結果

問題 No.728 ギブ and テイク
ユーザー PachicobuePachicobue
提出日時 2019-03-07 22:41:08
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 835 ms / 3,000 ms
コード長 5,545 bytes
コンパイル時間 901 ms
コンパイル使用メモリ 87,528 KB
最終ジャッジ日時 2025-01-06 22:01:20
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <algorithm>
#include <vector>
// https://yukicoder.me/problems/no/728
using ll = long long;
using ull = unsigned long long;
template <typename T>
constexpr T PopCount(T v) { return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 &
    0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<T>(v * 0x0101010101010101ULL >> 56 & 0x7f); }
template <typename T>
constexpr T log2p1(T v) { return v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PopCount(v); }
template <typename T>
constexpr bool ispow2(const T v) { return (v << 1) == (T(1) << (log2p1(v))); }
template <typename T>
constexpr T ceil2(const T v) { return ispow2(v) ? v : T(1) << log2p1(v); }
template <typename T>
constexpr T floor2(const T v) { return v == 0 ? T(0) : ispow2(v) ? v : T(1) << (log2p1(v) - 1); }
//!==============================================================================================!//
//! dP dP dP dP dP 8888ba.88ba dP !//
//! 88 88 88 88 88 88 '8b '8b 88 !//
//! 88 .8P .8P .d8888b. dP .dP .d8888b. 88 .d8888b. d8888P 88 88 88 .d8888b. d8888P !//
//! 88 d8' d8' 88' '88 88 d8' 88ooood8 88 88ooood8 88 88 88 88 88' '88 88 !//
//! 88.d8P8.d8P 88. .88 88 .88' 88. ... 88 88. ... 88 88 88 88 88. .88 88 !//
//! 8888' Y88' '88888P8 8888P' '88888P' dP '88888P' dP dP dP dP '88888P8 dP !//
//!==============================================================================================!//
template <std::size_t L>
class WaveletMatrix
{
public:
using T = unsigned long long;
template <typename InIt>
WaveletMatrix(const InIt first, const InIt last) : sz(std::distance(first, last)) // [0,2^L)
{
std::vector<bool> b(sz);
std::vector<T> v(first, last);
for (std::size_t i = 0, j = L - 1; i < L; i++, j--) {
std::vector<T> z, o;
for (std::size_t i = 0; i < sz; i++) { b[i] = (v[i] >> j) & 1, (b[i] ? o : z).push_back(v[i]); }
table.push_back(FID{b}), v = z, zero.push_back(z.size());
for (const T e : o) { v.push_back(e); }
}
}
std::size_t noLessThan(std::size_t l, std::size_t r, const T v) const // x[l,r) \in [v,2^L)
{
std::size_t ans = 0;
for (std::size_t i = 0, j = L - 1; i < L; i++, j--) {
const bool b = (v >> j) & 1;
const std::size_t rl = table[i].rank(l), rr = table[i].rank(r);
l = (b ? rl + zero[i] : l - rl), r = (b ? rr + zero[i] : r - rr), ans += (b ? 0 : rr - rl);
}
return r - l + ans;
}
std::size_t lessThan(const std::size_t l, const std::size_t r, const T v) const { return r - l - noLessThan(l, r, v); }
         // x[l,r) \in [0,v)
std::size_t rangeFreq(const std::size_t l, const std::size_t r, const T vinf, const T vsup) const { return noLessThan(l, r, vinf) - noLessThan(l,
        r, vsup); } // x[l,r) \in [vinf,vsup)
std::size_t rank(const std::size_t l, const std::size_t r, const T v) const { return rangeFreq(l, r, v, v + 1); }
         // x[l,r) \in {v}
T quantile(std::size_t l, std::size_t r, std::size_t k) const
         // x[l,r) k-th
{
std::size_t ans = 0;
for (std::size_t i = 0, j = L - 1; i < L; i++, j--) {
const std::size_t rl = table[i].rank(l), rr = table[i].rank(r);
const bool b = rr - rl > k;
l = (b ? rl + zero[i] : l - rl), r = (b ? rr + zero[i] : r - rr), k += (b ? 0 : k -= rr - rl), ans |= ((std::size_t)b << j);
}
return ans;
}
private:
class FID
{
private:
using B = unsigned long long;
static constexpr std::size_t BS = sizeof(B) * 8;
const std::size_t sz;
std::vector<B> data;
std::vector<std::size_t> large;
public:
FID(const std::vector<bool>& b) : sz(b.size()), data((sz + BS) / BS, 0), large((sz + BS) / BS, 0)
{
std::size_t one = 0;
for (std::size_t i = 0; i < sz; i++) {
data[i / BS] |= ((B)b[i] << (i % BS)), one += b[i];
if (i % BS == BS - 1) { large[(i + 1) / BS] = one; }
}
}
bool operator[](const std::size_t n) const { return (data[n / BS] >> (n % BS)) & 1; }
std::size_t rank(const std::size_t n) const { return large[n / BS] + (n % BS == 0 ? 0 : PopCount(data[n / BS] & ((1ULL << (n % BS)) - 1))); }
};
const std::size_t sz;
std::vector<std::size_t> zero;
std::vector<FID> table;
};
int main()
{
std::size_t N;
std::cin >> N;
std::vector<ull> A(N), A_L(N), L(N), R(N);
for (std::size_t i = 0; i < N; i++) { std::cin >> A[i], A[i] += 1000000000ULL; }
for (std::size_t i = 0; i < N; i++) { std::cin >> L[i] >> R[i], A_L[i] = A[i] - L[i]; }
WaveletMatrix<40> wm(A_L.begin(), A_L.end());
ull ans = 0;
for (std::size_t i = 0; i < N; i++) {
const ull Obj = A[i] + R[i];
const std::size_t ri = std::size_t(std::upper_bound(A.begin(), A.end(), Obj) - A.begin());
ans += wm.rangeFreq(i + 1, ri, 0, A[i] + 1);
}
std::cout << ans << std::endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0