結果

問題 No.777 再帰的ケーキ
ユーザー fumiphys
提出日時 2019-03-11 19:15:22
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 519 ms / 2,000 ms
コード長 3,635 bytes
コンパイル時間 1,550 ms
コンパイル使用メモリ 126,536 KB
実行使用メモリ 32,296 KB
最終ジャッジ日時 2024-06-23 15:39:37
合計ジャッジ時間 6,744 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// includes
#include <cstdio>
#include <cstdint>
#include <iostream>
#include <iomanip>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <unordered_map>
#include <algorithm>
#include <utility>
#include <functional>
#include <cmath>
#include <climits>
#include <bitset>
#include <list>
#include <random>
// macros
#define ll long long int
#define pb emplace_back
#define mk make_pair
#define pq priority_queue
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
using namespace std;
// types
typedef pair<int, int> P;
typedef pair<ll, int> Pl;
typedef pair<ll, ll> Pll;
typedef pair<double, double> Pd;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1e9 + 7;
// solve
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
struct cake{
ll a, b, c;
cake(){}
cake(ll a, ll b, ll c): a(a), b(b), c(c){}
};
ll dp[200001];
bool comp(const cake &x, const cake &y){
if(x.a != y.a)return x.a < y.a;
return x.b < y.b;
}
template<typename T, typename E>
struct SegmentTree_ {
function<T(T, T)> f;
function<T(T, E)> g;
int n;
T def;
vector<T> vec;
SegmentTree_(){}
SegmentTree_(int n_, function<T(T, T)> f_, function<T(T, E)> g_, T def_, vector<T> v=vector<T>()){
f = f_;
g = g_;
def = def_;
// initialize vector
n = 1;
while(n < n_){
n *= 2;
}
vec = vector<T>(2*n -1, def);
// initialize segment tree
for(int i = 0; i < v.size(); i++){
vec[i + n - 1] = v[i];
}
for(int i = n - 2; i >= 0; i--){
vec[i] = f(vec[2*i+1], vec[2*i+2]);
}
}
void update(int k, E val){
k = k + n - 1;
vec[k] = g(vec[k], val);
while(k > 0){
k = (k - 1) / 2;
vec[k] = f(vec[2*k+1], vec[2*k+2]);
}
}
// [l, r) -> [a, b) (at k)
T query(int a, int b, int k, int l, int r){
if(r <= a || b <= l)return def;
if(a <= l && r <= b)return vec[k];
T ld = query(a, b, 2*k+1, l, (l+r)/2);
T rd = query(a, b, 2*k+2, (l+r)/2, r);
return f(ld, rd);
}
T query(int a, int b){
return query(a, b, 0, 0, n);
}
};
template<typename T, typename E>
using SegmentTree = struct SegmentTree_<T, E>;
using SegmentTreeI = SegmentTree<int, int>;
int main(int argc, char const* argv[])
{
ios_base::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<ll> a(n), b(n), c(n);
rep(i, n)cin >> a[i] >> b[i] >> c[i];
vector<cake> vec(n);
rep(i, n)vec[i] = cake(a[i], b[i], c[i]);
sort(all(vec), comp);
b.pb(0);
sort(all(b));
UNIQUE(b);
map<ll, int> mp;
for(int i = 0; i < sz(b); i++)mp[b[i]] = i;
SegmentTree<ll, ll> seg = SegmentTree<ll, ll>(sz(b)+1, [](ll a, ll b){return max(a, b);},
[](ll a,ll b){return b;}, 0, vector<ll>(sz(b)+1, 0));
vector<cake> curr;
for(int i = 0; i < n; i++){
dp[i+1] = vec[i].c;
dp[i+1] = max(dp[i+1], vec[i].c + seg.query(0, mp[vec[i].b]));
curr.pb(vec[i]);
if(i + 1 < n && vec[i+1].a != vec[i].a){
reverse(all(curr));
for(int j = 0; j < sz(curr); j++){
seg.update(mp[curr[j].b], max(seg.query(mp[curr[j].b], mp[curr[j].b]+1), dp[i+1-j]));
}
curr.clear();
}
}
ll res = 0;
rep(i, n){
res = max(res, dp[i+1]);
}
cout << res << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0