結果
| 問題 |
No.195 フィボナッチ数列の理解(2)
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2019-03-17 10:25:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 487 ms / 5,000 ms |
| コード長 | 5,088 bytes |
| コンパイル時間 | 1,910 ms |
| コンパイル使用メモリ | 183,324 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-06 06:02:22 |
| 合計ジャッジ時間 | 5,561 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
template<class T = int> using V = vector<T>;
template<class T = int> using VV = V< V<T> >;
template<unsigned P> struct ModInt {
using M = ModInt;
unsigned v;
ModInt() : v(0) {}
template<class Z> ModInt(Z x) : v(x >= 0 ? x % P : -x % P ? P - -x % P : 0) {}
constexpr ModInt(unsigned v, int) : v(v) {}
static constexpr unsigned p() { return P; }
M operator+() const { return *this; }
M operator-() const { return {v ? P - v : 0, 0}; }
explicit operator bool() const noexcept { return v; }
bool operator!() const noexcept { return !(bool) *this; }
M operator*(M r) const { return M(*this) *= r; }
M operator/(M r) const { return M(*this) /= r; }
M operator+(M r) const { return M(*this) += r; }
M operator-(M r) const { return M(*this) -= r; }
bool operator==(M r) const { return v == r.v; }
bool operator!=(M r) const { return !(*this == r); }
M& operator*=(M r) { v = (uint64_t) v * r.v % P; return *this; }
M& operator/=(M r) { return *this *= r.inv(); }
M& operator+=(M r) { v = r.v < P - v ? v + r.v : v - (P - r.v); return *this; }
M& operator-=(M r) { v = r.v <= v ? v - r.v : v + (P - r.v); return *this; }
M inv() const {
int a = v, b = P, x = 1, u = 0;
while (b) {
int q = a / b;
swap(a -= q * b, b);
swap(x -= q * u, u);
}
assert(a == 1);
return x;
}
template<class Z> M pow(Z n) const {
n = n >= 0 ? n % (P - 1) : P - 1 - -n % (P - 1);
M res = 1;
for (M a = *this; n; a *= a, n >>= 1) if (n & 1) res *= a;
return res;
}
template<class Z> friend M operator*(Z l, M r) { return M(l) *= r; }
template<class Z> friend M operator/(Z l, M r) { return M(l) /= r; }
template<class Z> friend M operator+(Z l, M r) { return M(l) += r; }
template<class Z> friend M operator-(Z l, M r) { return M(l) -= r; }
friend ostream& operator<<(ostream& os, M r) { return os << r.v; }
friend istream& operator>>(istream& is, M& r) { lint x; is >> x; r = x; return is; }
template<class Z> friend bool operator==(Z l, M r) { return M(l) == r; }
template<class Z> friend bool operator!=(Z l, M r) { return !(l == r); }
};
using Mint = ModInt<(unsigned) 1e9 + 7>;
template<class T> pair<int, T> gauss_jordan(VV<T>& A) {
int n = A.size(), m = A[0].size(), r = 0;
T det = 1;
for (int j = 0; j < m; ++j) {
for (int i = r + 1; i < n; ++i) if (A[i][j]) {
swap(A[r], A[i]);
det = -det;
break;
}
if (!A[r][j]) continue;
// if (abs(A[r][j]) < 1e-12) continue;
det *= A[r][j];
auto inv = (T) 1 / A[r][j];
for (auto&& e : A[r]) e *= inv;
for (int i = 0; i < n; ++i) if (i != r and A[i][j]) {
auto c = A[i][j];
for (int k = 0; k < m; ++k) {
A[i][k] -= c * A[r][k];
}
}
if (++r == n) break;
}
return {r, det * (r == n)};
}
template<class Z> Z ext_gcd(Z a, Z b, Z& x, Z& y) {
Z u = y = 0, v = x = 1;
while (b) {
Z q = a / b;
swap(a -= q * b, b);
swap(x -= q * u, u);
swap(y -= q * v, v);
}
return a;
}
template<class Z> pair<Z, Z> bezout(Z a, Z b, Z c) {
Z x, y, d = ext_gcd(a, b, x, y);
if (c % d) return {0, 0};
Z q = c / (a + b) / b;
Z r = c / d % b * x % b;
Z mn = numeric_limits<Z>::max();
for (int i = -1; i <= 1; ++i) {
Z nx = (q + i) * b + r;
Z ny = (c - a * nx) / b;
if (abs(ny - nx) < mn) {
mn = abs(ny - nx);
x = nx, y = ny;
}
}
return {x, y};
}
int main() {
cin.tie(nullptr); ios::sync_with_stdio(false);
constexpr int N = 44;
int X, Y, Z; cin >> X >> Y >> Z;
V<> F{1, 0};
for (int i = 2; i <= N; ++i) {
F.push_back(F[i - 1] + F[i - 2]);
}
pair<int, int> res{2e9, 2e9};
for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) for (int k = 0; k < N; ++k) {
VV<Mint> A{{F[i], F[i + 1]}, {F[j], F[j + 1]}, {F[k], F[k + 1]}};
auto B = A;
B[0].push_back(X);
B[1].push_back(Y);
B[2].push_back(Z);
if (i == 3 and j == 19 and k == 16) {
// cerr << "A(" << A.size() << ", " << A[0].size() << ")\n"; for (const auto& v : A) { for (const auto& e : v) cerr << e << '\t'; cerr << '\n'; }
// cerr << "B(" << B.size() << ", " << B[0].size() << ")\n"; for (const auto& v : B) { for (const auto& e : v) cerr << e << '\t'; cerr << '\n'; }
// cerr << rA << ' ' << rB << '\n';
}
int rA = gauss_jordan(A).first;
int rB = gauss_jordan(B).first;
if (rA != rB) continue;
int x, y;
if (rA == 1) {
if (!F[i]) x = 1, y = X / F[i + 1];
else if (!F[i + 1]) x = X / F[i], y = 1;
else {
tie(x, y) = bezout(F[i], F[i + 1], X);
if (x <= 0 or y <= 0) continue;
while (x - F[i + 1] > 0) {
x -= F[i + 1];
y += F[i];
}
}
} else {
x = B[0][2].v, y = B[1][2].v;
if (x <= 0 or y <= 0) continue;
if (F[i] * x + F[i + 1] * y != X) continue;
}
if (make_pair(x, y) < res) {
res = {x, y};
}
}
if (res.first > 1e9) cout << -1 << '\n';
else cout << res.first << ' ' << res.second << '\n';
}
risujiroh