結果

問題 No.802 だいたい等差数列
ユーザー square1001
提出日時 2019-03-17 21:54:15
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 5,906 bytes
コンパイル時間 1,459 ms
コンパイル使用メモリ 88,696 KB
実行使用メモリ 92,768 KB
最終ジャッジ日時 2024-07-07 22:18:44
合計ジャッジ時間 5,415 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 4
other AC * 2 WA * 8 TLE * 1 -- * 19
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef ___CLASS_MODINT
#define ___CLASS_MODINT
#include <vector>
#include <cstdint>
using singlebit = uint32_t;
using doublebit = uint64_t;
static constexpr singlebit find_inv(singlebit n, int d = 5, singlebit x = 1) {
return d == 0 ? x : find_inv(n, d - 1, x * (2 - x * n));
}
template <singlebit mod, singlebit primroot> class modint {
// Fast Modulo Integer, Assertion: mod < 2^31
private:
singlebit n;
static constexpr int level = 32; // LIMIT OF singlebit
static constexpr singlebit max_value = -1;
static constexpr singlebit r2 = (((1ull << level) % mod) << level) % mod;
static constexpr singlebit inv = singlebit(-1) * find_inv(mod);
static singlebit reduce(doublebit x) {
singlebit res = (x + doublebit(singlebit(x) * inv) * mod) >> level;
return res < mod ? res : res - mod;
}
public:
modint() : n(0) {};
modint(singlebit n_) { n = reduce(doublebit(n_) * r2); };
modint& operator=(const singlebit x) { n = reduce(doublebit(x) * r2); return *this; }
bool operator==(const modint& x) const { return n == x.n; }
bool operator!=(const modint& x) const { return n != x.n; }
modint& operator+=(const modint& x) { n += x.n; n -= (n < mod ? 0 : mod); return *this; }
modint& operator-=(const modint& x) { n += mod - x.n; n -= (n < mod ? 0 : mod); return *this; }
modint& operator*=(const modint& x) { n = reduce(1ull * n * x.n); return *this; }
modint operator+(const modint& x) const { return modint(*this) += x; }
modint operator-(const modint& x) const { return modint(*this) -= x; }
modint operator*(const modint& x) const { return modint(*this) *= x; }
static singlebit get_mod() { return mod; }
static singlebit get_primroot() { return primroot; }
singlebit get() { return reduce(doublebit(n)); }
modint binpow(singlebit b) {
modint ans(1), cur(*this);
while (b > 0) {
if (b & 1) ans *= cur;
cur *= cur;
b >>= 1;
}
return ans;
}
};
template<typename modulo>
std::vector<modulo> get_modvector(std::vector<int> v) {
std::vector<modulo> ans(v.size());
for (int i = 0; i < v.size(); ++i) {
ans[i] = v[i];
}
return ans;
}
#endif
#ifndef ___CLASS_NTT
#define ___CLASS_NTT
#include <vector>
template<typename modulo>
class ntt {
// Number Theoretic Transform
private:
int depth;
std::vector<modulo> roots;
std::vector<modulo> powinv;
public:
ntt() {
depth = 0;
uint32_t div_number = modulo::get_mod() - 1;
while (div_number % 2 == 0) div_number >>= 1, ++depth;
modulo b = modulo::get_primroot();
for (int i = 0; i < depth; ++i) b *= b;
modulo baseroot = modulo::get_primroot(), bb = b;
while (bb != 1) bb *= b, baseroot *= modulo::get_primroot();
roots = std::vector<modulo>(depth + 1, 0);
powinv = std::vector<modulo>(depth + 1, 0);
powinv[1] = (modulo::get_mod() + 1) / 2;
for (int i = 2; i <= depth; ++i) powinv[i] = powinv[i - 1] * powinv[1];
roots[depth] = 1;
for (int i = 0; i < modulo::get_mod() - 1; i += 1 << depth) roots[depth] *= baseroot;
for (int i = depth - 1; i >= 1; --i) roots[i] = roots[i + 1] * roots[i + 1];
}
void fourier_transform(std::vector<modulo> &v, bool inverse) {
int s = v.size();
for (int i = 0, j = 1; j < s - 1; ++j) {
for (int k = s >> 1; k >(i ^= k); k >>= 1);
if (i < j) std::swap(v[i], v[j]);
}
int sc = 0, sz = 1;
while (sz < s) sz *= 2, ++sc;
std::vector<modulo> pw(s + 1); pw[0] = 1;
for (int i = 1; i <= s; i++) pw[i] = pw[i - 1] * roots[sc];
int qs = s;
for (int b = 1; b < s; b <<= 1) {
qs >>= 1;
for (int i = 0; i < s; i += b * 2) {
for (int j = i; j < i + b; ++j) {
modulo delta = pw[(inverse ? b * 2 - j + i : j - i) * qs] * v[j + b];
v[j + b] = v[j] - delta;
v[j] += delta;
}
}
}
if (inverse) {
for (int i = 0; i < s; ++i) v[i] *= powinv[sc];
}
}
std::vector<modulo> convolve(std::vector<modulo> v1, std::vector<modulo> v2) {
const int threshold = 16;
if (v1.size() < v2.size()) swap(v1, v2);
int s1 = 1; while (s1 < v1.size()) s1 <<= 1; v1.resize(s1);
int s2 = 1; while (s2 < v2.size()) s2 <<= 1; v2.resize(s2 * 2);
std::vector<modulo> ans(s1 + s2);
if (s2 <= threshold) {
for (int i = 0; i < s1; ++i) {
for (int j = 0; j < s2; ++j) {
ans[i + j] += v1[i] * v2[j];
}
}
}
else {
fourier_transform(v2, false);
for (int i = 0; i < s1; i += s2) {
std::vector<modulo> v(v1.begin() + i, v1.begin() + i + s2);
v.resize(s2 * 2);
fourier_transform(v, false);
for (int j = 0; j < v.size(); ++j) v[j] *= v2[j];
fourier_transform(v, true);
for (int j = 0; j < s2 * 2; ++j) {
ans[i + j] += v[j];
}
}
}
return ans;
}
};
#endif
#include <vector>
#include <iostream>
using namespace std;
using modulo1 = modint<469762049, 3>; ntt<modulo1> ntt_base1;
using modulo2 = modint<167772161, 3>; ntt<modulo2> ntt_base2;
const modulo1 magic_inv = modulo1(modulo2::get_mod()).binpow(modulo1::get_mod() - 2);
const int mod = 1000000007;
vector<int> convolve_mod(vector<int> v1, vector<int> v2) {
vector<modulo1> mul_base1 = ntt_base1.convolve(get_modvector<modulo1>(v1), get_modvector<modulo1>(v2));
vector<modulo2> mul_base2 = ntt_base2.convolve(get_modvector<modulo2>(v1), get_modvector<modulo2>(v2));
vector<int> ans(mul_base1.size());
for (int i = 0; i < mul_base1.size(); ++i) {
long long val = (long long)(((mul_base1[i] - modulo1(mul_base2[i].get())) * magic_inv).get()) * modulo2::get_mod() + mul_base2[i].get();
ans[i] = val % mod;
}
return ans;
}
int main() {
int N, M, D1, D2;
cin >> N >> M >> D1 >> D2;
vector<int> cur(M); cur[0] = 1;
vector<int> pw(M);
for (int i = D1; i <= D2; ++i) {
if (0 <= i && i < M) pw[i] = 1;
}
--N;
while (N) {
if (N & 1) {
cur = convolve_mod(cur, pw);
cur.resize(M);
}
pw = convolve_mod(pw, pw);
pw.resize(M);
N >>= 1;
}
int ans = 0;
for (int i = 0; i < M; ++i) {
ans = (ans + (long long)(cur[i]) * (M - i)) % mod;
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0