結果
問題 | No.802 だいたい等差数列 |
ユーザー | Pachicobue |
提出日時 | 2019-03-17 23:43:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 22,033 bytes |
コンパイル時間 | 2,312 ms |
コンパイル使用メモリ | 215,120 KB |
実行使用メモリ | 107,264 KB |
最終ジャッジ日時 | 2024-07-08 06:45:24 |
合計ジャッジ時間 | 9,375 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 101 ms
89,728 KB |
testcase_01 | AC | 132 ms
84,480 KB |
testcase_02 | AC | 105 ms
84,352 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 103 ms
84,352 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 103 ms
84,352 KB |
testcase_07 | AC | 99 ms
84,352 KB |
testcase_08 | AC | 99 ms
84,352 KB |
testcase_09 | AC | 104 ms
84,352 KB |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | TLE | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
ソースコード
#include <bits/stdc++.h> #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" //!===========================================================!// //! dP dP dP !// //! 88 88 88 !// //! 88aaaaa88a .d8888b. .d8888b. .d888b88 .d8888b. 88d888b. !// //! 88 88 88ooood8 88' '88 88' '88 88ooood8 88' '88 !// //! 88 88 88. ... 88. .88 88. .88 88. ... 88 !// //! dP dP '88888P' '88888P8 '88888P8 '88888P' dP !// //!===========================================================!// using ld = long double; using ll = long long; using ull = unsigned long long; std::mt19937 mt{std::random_device{}()}; template <typename T> constexpr T INF = std::numeric_limits<T>::max() / 4; template <typename T> constexpr T MOD = static_cast<T>(1000000007); template <typename F> constexpr F PI() { return 3.1415926535897932385; } #define SHOW(...) (std::cerr << "(" << #__VA_ARGS__ << ") = ("), HogeHogeSansuu(__VA_ARGS__), std::cerr << ")" << std::endl; struct has_debugPrint_impl { template <class T> static auto check(T&& x) -> decltype(x.debugPrint(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_debugPrint : public decltype(has_debugPrint_impl::check<T>(std::declval<T>())) { }; template <bool> struct HogeHogeDump { template <typename T> static void dump(const T& x) { x.debugPrint(); } }; template <> struct HogeHogeDump<false> { template <typename T> static void dump(const T& x) { std::cerr << x; } }; void HogeHogeSansuu() { ; } template <typename T> void HogeHogeSansuu(const T& x) { HogeHogeDump<has_debugPrint<T>::value>::dump(x); } template <typename T, typename... Args> void HogeHogeSansuu(const T& x, Args... args) { HogeHogeDump<has_debugPrint<T>::value>::dump(x), std::cerr << ",", HogeHogeSansuu(args...); } template <typename T> bool chmin(T& a, const T& b) { return a = std::min(a, b), a == b; } template <typename T> bool chmax(T& a, const T& b) { return a = std::max(a, b), a == b; } template <typename T, typename F> void For(const T s, const T t, const F f) { for (T i = s; i != t; i += T(s < t ? 1 : -1)) { f(i); } } template <typename T, typename F> void Rep(const T N, const F f) { For<T, F>(0, N, f); } template <typename T, typename F> void RRep(const T N, const F f) { For<T, F>(N - 1, -1, f); } template <typename T> std::vector<T> Vec(const std::size_t n, T v) { return std::vector<T>(n, v); } template <class... Args> auto Vec(const std::size_t n, Args... args) { return std::vector<decltype(Vec(args...))>(n, Vec(args...)); } template <typename T> constexpr T PopCount(const T u) { unsigned long long v = static_cast<unsigned long long>(u); return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<T>(v * 0x0101010101010101ULL >> 56 & 0x7f); } template <typename T> constexpr T log2p1(const T u) { unsigned long long v = static_cast<unsigned long long>(u); return v = static_cast<unsigned long long>(v), v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PopCount(v); } template <typename T> constexpr bool ispow2(const T v) { return (v << 1) == (T(1) << (log2p1(v))); } template <typename T> constexpr T ceil2(const T v) { return ispow2(v) ? v : T(1) << log2p1(v); } template <typename T> constexpr T floor2(const T v) { return v == 0 ? T(0) : ispow2(v) ? v : T(1) << (log2p1(v) - 1); } template <typename T> struct Accum { template <typename InIt> Accum(const InIt first, const InIt last) : accum(std::size_t(std::distance(first, last))) { std::partial_sum(first, last, accum.begin()); } T sum(const std::size_t i) const { return i == 0 ? T(0) : accum[i - 1]; } T sum(const std::size_t l, const std::size_t r) const { return sum(r) - sum(l); } std::vector<T> accum; }; template <typename T> struct Accum2D { Accum2D(const std::vector<std::vector<T>>& t) : accum{t} { for (std::size_t i = 0; i < accum.size(); i++) { for (std::size_t j = 1; j < accum[i].size(); j++) { accum[i][j] += accum[i][j - 1]; } } for (std::size_t i = 1; i < accum.size(); i++) { for (std::size_t j = 0; j < accum[i].size(); j++) { accum[i][j] += accum[i - 1][j]; } } } T sum(const std::size_t y, const std::size_t x) const { return y == 0 or x == 0 ? T(0) : accum[y - 1][x - 1]; } T sum(const std::size_t ymin, const std::size_t ysup, const std::size_t xmin, const std::size_t xsup) const { return sum(ysup, xsup) - sum(ymin, xmin); } std::vector<std::vector<T>> accum; }; template <typename T> struct Zip { template <typename InIt> Zip(const InIt first, const InIt last) : unzip(std::size_t(std::distance(first, last))) { std::copy(first, last, unzip), std::sort(unzip.begin(), unzip.end()), unzip.erase(std::unique(unzip.begin(), unzip.end()), unzip.end()); for (std::size_t i = 0; i < unzip.size(); i++) { zip[unzip[i]] = i; } } std::vector<T> unzip; std::map<T, std::size_t> zip; }; template <typename T, std::size_t N> std::ostream& operator<<(std::ostream& os, const std::array<T, N>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } template <typename T, typename A> std::ostream& operator<<(std::ostream& os, const std::deque<T, A>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } template <typename K, typename T, typename C, typename A> std::ostream& operator<<(std::ostream& os, const std::multimap<K, T, C, A>& v) { os << "["; for (const auto& e : v) { os << "<" << e.first << ": " << e.second << ">,"; } return (os << "]" << std::endl); } template <typename T, typename C, typename A> std::ostream& operator<<(std::ostream& os, const std::multiset<T, C, A>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } template <typename K, typename T, typename C, typename A> std::ostream& operator<<(std::ostream& os, const std::map<K, T, C, A>& v) { os << "["; for (const auto& e : v) { os << "<" << e.first << ": " << e.second << ">,"; } return (os << "]" << std::endl); } template <typename T1, typename T2> std::ostream& operator<<(std::ostream& os, const std::pair<T1, T2>& v) { return (os << "<" << v.first << "," << v.second << ">"); } template <typename T1, typename T2, typename T3> std::ostream& operator<<(std::ostream& os, const std::priority_queue<T1, T2, T3>& v) { auto q = v; os << "["; while (not q.empty()) { os << q.top() << ",", q.pop(); } return os << "]\n"; } template <typename T1, typename T2> std::ostream& operator<<(std::ostream& os, const std::queue<T1>& v) { auto q = v; os << "["; while (not q.empty()) { os << q.front() << ",", q.pop(); } return os << "]\n"; } template <typename T, typename C, typename A> std::ostream& operator<<(std::ostream& os, const std::set<T, C, A>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } template <typename T1, typename T2> std::ostream& operator<<(std::ostream& os, const std::stack<T1>& v) { auto q = v; os << "["; while (not q.empty()) { os << q.top() << ",", q.pop(); } return os << "]\n"; } template <typename K, typename T, typename H, typename P, typename A> std::ostream& operator<<(std::ostream& os, const std::unordered_multimap<K, T, H, P, A>& v) { os << "["; for (const auto& e : v) { os << "<" << e.first << ": " << e.second << ">,"; } return (os << "]" << std::endl); } template <typename T, typename H, typename P, typename A> std::ostream& operator<<(std::ostream& os, const std::unordered_multiset<T, H, P, A>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } template <typename K, typename T, typename H, typename P, typename A> std::ostream& operator<<(std::ostream& os, const std::unordered_map<K, T, H, P, A>& v) { os << "["; for (const auto& e : v) { os << "<" << e.first << ": " << e.second << ">,"; } return (os << "]" << std::endl); } template <typename T, typename H, typename P, typename A> std::ostream& operator<<(std::ostream& os, const std::unordered_set<T, H, P, A>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } template <typename T, typename A> std::ostream& operator<<(std::ostream& os, const std::vector<T, A>& v) { os << "["; for (const auto& e : v) { os << e << ","; } return (os << "]" << std::endl); } //!===============================================================!// //! 88888888b dP .88888. a88888b. 888888ba !// //! 88 88 d8' '88 d8' '88 88 '8b !// //! a88aaaa dP. .dP d8888P 88 88 88 88 !// //! 88 '8bd8' 88 88 YP88 88 88 88 !// //! 88 .d88b. 88 Y8. .88 Y8. .88 88 .8P !// //! 88888888P dP' 'dP dP '88888' Y88888P' 8888888P !// //!===============================================================!// template <typename T> constexpr std::pair<T, T> extgcd(const T a, const T b) { if (b == 0) { return std::pair<T, T>{1, 0}; } const auto p = extgcd(b, a % b); return {p.second, p.first - p.second * (a / b)}; } template <typename T> constexpr T inverse(const T a, const T mod) { return (mod + extgcd((mod + a % mod) % mod, mod).first % mod) % mod; } //!========================================================!// //! 8888ba.88ba dP dP dP !// //! 88 '8b '8b 88 88 88 !// //! 88 88 88 .d8888b. .d888b88 88 88d888b. d8888P !// //! 88 88 88 88' '88 88' '88 88 88' '88 88 !// //! 88 88 88 88. .88 88. .88 88 88 88 88 !// //! dP dP dP '88888P' '88888P8 dP dP dP dP !// //!========================================================!// template <typename T, T mod> class ModInt { private: T value; public: ModInt() : value{0} {} ModInt(const T val) : value{((val % mod) + mod) % mod} {} ModInt(const ModInt<T, mod>& n) : value{n()} {} ModInt<T, mod>& operator=(const ModInt<T, mod>& n) { return value = n(), (*this); } ModInt<T, mod>& operator=(const T v) { return value = (mod + v % mod) % mod, (*this); } ModInt<T, mod> operator+() const { return *this; } ModInt<T, mod> operator-() const { return ModInt{mod - value}; } ModInt<T, mod> operator+(const ModInt<T, mod>& val) const { return ModInt{value + val()}; } ModInt<T, mod> operator-(const ModInt<T, mod>& val) const { return ModInt{value - val() + mod}; } ModInt<T, mod> operator*(const ModInt<T, mod>& val) const { return ModInt{value * val()}; } ModInt<T, mod> operator/(const ModInt<T, mod>& val) const { return ModInt{value * inverse(val(), mod)}; } ModInt<T, mod>& operator+=(const ModInt<T, mod>& val) { return (((value += val()) %= mod) += mod) %= mod, (*this); } ModInt<T, mod>& operator-=(const ModInt<T, mod>& val) { return (((value -= val()) %= mod) += mod) %= mod, (*this); } ModInt<T, mod>& operator*=(const ModInt<T, mod>& val) { return (((value *= val()) %= mod) += mod) %= mod, (*this); } ModInt<T, mod>& operator/=(const ModInt<T, mod>& val) { return (((value *= inverse(val(), mod)) %= mod) += mod) %= mod, (*this); } ModInt<T, mod> operator+(const T val) const { return ModInt{value + val}; } ModInt<T, mod> operator-(const T val) const { return ModInt{value - val}; } ModInt<T, mod> operator*(const T val) const { return ModInt{value * val}; } ModInt<T, mod> operator/(const T val) const { return ModInt{value * inverse(val, mod)}; } template <typename I> ModInt<T, mod> operator^(const I n) const { return n < 0 ? (T(1) / (*this)) ^ (-n) : n == 0 ? ModInt<T, mod>(1) : n % 2 == 1 ? (*this) * ((*this) ^ (n - 1)) : ((*this * *this) ^ (n / 2)); } ModInt<T, mod>& operator+=(const T val) { return (((value += val) %= mod) += mod) %= mod, (*this); } ModInt<T, mod>& operator-=(const T val) { return (((value -= val) %= mod) += mod) %= mod, (*this); } ModInt<T, mod>& operator*=(const T val) { return (((value *= val) %= mod) += mod) %= mod, (*this); } ModInt<T, mod>& operator/=(const T val) { return (((value *= inverse(val, mod)) %= mod) += mod) %= mod, (*this); } template <typename I> ModInt<T, mod>& operator^=(const I n) { return (*this) = ((*this) ^ n); } bool operator==(const ModInt<T, mod>& val) const { return value == val.value; } bool operator!=(const ModInt<T, mod>& val) const { return not(*this == val); } bool operator==(const T val) const { return value == (mod + val % mod) % mod; } bool operator!=(const T val) const { return not(*this == val); } T operator()() const { return value; } }; template <typename T, T mod> inline ModInt<T, mod> operator+(const T val, const ModInt<T, mod>& n) { return ModInt<T, mod>{n() + val}; } template <typename T, T mod> inline ModInt<T, mod> operator-(const T val, const ModInt<T, mod>& n) { return ModInt<T, mod>{-n() + val}; } template <typename T, T mod> inline ModInt<T, mod> operator*(const T val, const ModInt<T, mod>& n) { return ModInt<T, mod>{n() * val}; } template <typename T, T mod> inline ModInt<T, mod> operator/(const T val, const ModInt<T, mod>& n) { return ModInt<T, mod>(val) / n; } template <typename T, T mod> inline bool operator==(const T val, const ModInt<T, mod>& n) { return n == val; } template <typename T, T mod> inline bool operator!=(const T val, const ModInt<T, mod>& n) { return not(val == n); } template <typename T, T mod> inline std::istream& operator>>(std::istream& is, ModInt<T, mod>& n) { T v; return is >> v, n = v, is; } template <typename T, T mod> std::ostream& operator<<(std::ostream& os, const ModInt<T, mod>& n) { return (os << n()); } template <int mod> using Mint = ModInt<int, mod>; template <ll mod> using Mll = ModInt<ll, mod>; //!============================================================================!// //! 8888ba.88ba dP a88888b. dP !// //! 88 '8b '8b 88 d8' '88 88 !// //! 88 88 88 .d8888b. .d888b88 88 .d8888b. 88d8b.d8b. 88d888b. !// //! 88 88 88 88' '88 88' '88 88 88' '88 88''88''88 88' '88 !// //! 88 88 88 88. .88 88. .88 Y8. .88 88. .88 88 88 88 88. .88 !// //! dP dP dP '88888P' '88888P8 Y88888P' '88888P' dP dP dP 88Y8888' !// //!============================================================================!// template <typename T, T mod> class ModComb { public: ModComb(const std::size_t N) : f(N + 1, ModInt<T, mod>(1)), in(N + 1, ModInt<T, mod>(1)), invf(N + 1, ModInt<T, mod>(1)) { for (T i = 2; i <= (T)N; i++) { f[i] = f[i - 1] * i, in[i] = (mod - (mod / i)) * in[mod % i], invf[i] = invf[i - 1] * in[i]; } } ModInt<T, mod> fact(const std::size_t N) const { return f[N]; } ModInt<T, mod> inv(const std::size_t N) const { return in[N]; } ModInt<T, mod> invFact(const std::size_t N) const { return invf[N]; } ModInt<T, mod> perm(const std::size_t N, const std::size_t K) const { return f[N] * invf[N - K]; } ModInt<T, mod> comb(const std::size_t N, const std::size_t K) const { return f[N] * invf[K] * invf[N - K]; } private: std::vector<ModInt<T, mod>> f, in, invf; }; //!==================================!// //! 88888888b 88888888b d888888P !// //! 88 88 88 !// //! a88aaaa a88aaaa 88 !// //! 88 88 88 !// //! 88 88 88 !// //! dP dP dP !// //!==================================!// template <typename F = double, std::size_t L = 20> class FFT { private: struct C { F x{}, y{}; C operator+(const C& c) const { return C{x + c.x, y + c.y}; } C operator-(const C& c) const { return C{x - c.x, y - c.y}; } C operator*(const C& c) const { return C{x * c.x - y * c.y, x * c.y + y * c.x}; } C operator~() const { return C{x, -y}; } }; void fft(C* a, const std::size_t n) const { const std::size_t shift = L - n; for (std::size_t i = 0; i < (1UL << n); i++) { if (i < (rev[i] >> shift)) { std::swap(a[i], a[rev[i] >> shift]); } } for (std::size_t k = 1; k < (1UL << n); k <<= 1) { for (std::size_t i = 0; i < (1UL << n); i += (2 * k)) { for (std::size_t j = 0; j < k; j++) { const C z = a[i + j + k] * roots[j + k]; a[i + j + k] = a[i + j] - z, a[i + j] = a[i + j] + z; } } } } static std::size_t LG(const std::size_t n) { std::size_t lg = 0; for (std::size_t ans = 1; ans < n; ans <<= 1, lg++) {} return lg; } C roots[1 << L] = {{0, 0}, {1, 0}}; std::size_t rev[1 << L] = {0, 1}; C fa[1 << L], fb[1 << L]; public: FFT() { for (std::size_t i = 0; i < (1 << L); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (L - 1)); } for (std::size_t k = 1; k < L; k++) { const F s = 2 * PI<F>() / (1 << (k + 1)); for (std::size_t i = 1UL << (k - 1); i < (1UL << k); i++) { roots[i << 1] = roots[i], roots[i << 1 | 1] = roots[i << 1] * C{std::cos(s), std::sin(s)}; } } } template <typename T = ll, typename O = int> std::vector<T> convolute(const std::vector<O>& a, const std::vector<O>& b) { const std::size_t need = a.size() + b.size() - 1, lg = LG(need), sz = 1 << lg; for (std::size_t i = 0; i < sz; i++) { fa[i] = C{F(i < a.size() ? a[i] : 0), F(i < b.size() ? b[i] : 0)}; } fft(fa, lg); const C r{0, -0.25 / (F)sz}; for (std::size_t i = 0; i <= (sz >> 1); i++) { std::size_t j = (sz - i) & (sz - 1); const C z = (fa[j] * fa[j] - ~(fa[i] * fa[i])) * r; fa[j] = (fa[i] * fa[i] - ~(fa[j] * fa[j])) * r, fa[i] = z; } fft(fa, lg); std::vector<T> ans(need); for (std::size_t i = 0; i < need; i++) { ans[i] = (T)std::floor(fa[i].x + 0.5); } return ans; } template <typename T = int, typename O = int> std::vector<T> convolute(const std::vector<O>& a, const std::vector<O>& b, const T mod) { const std::size_t need = a.size() + b.size() - 1, lg = LG(need), sz = 1 << lg; for (std::size_t i = 0; i < a.size(); i++) { const int x = (mod + a[i] % mod) % mod; fa[i] = C{(F)(x & ((1 << 15) - 1)), F(x >> 15)}; } std::fill(fa + a.size(), fa + sz, C{0, 0}); fft(fa, lg); for (std::size_t i = 0; i < b.size(); i++) { const T x = (mod + b[i] % mod) % mod; fb[i] = C{F(x & ((1 << 15) - 1)), F(x >> 15)}; } std::fill(fb + b.size(), fb + sz, C{0, 0}); fft(fb, lg); F ratio = 0.25 / F(sz); C r2{0, -1}, r3{ratio, 0}, r4{0, -ratio}, r5{0, 1}; for (std::size_t i = 0; i <= (sz >> 1); i++) { const std::size_t j = (sz - i) & (sz - 1); const C a1 = (fa[i] + ~fa[j]), a2 = (fa[i] - ~fa[j]) * r2, b1 = (fb[i] + ~fb[j]) * r3, b2 = (fb[i] - ~fb[j]) * r4; if (i != j) { const C c1 = (fa[j] + ~fa[i]), c2 = (fa[j] - ~fa[i]) * r2, d1 = (fb[j] + ~fb[i]) * r3, d2 = (fb[j] - ~fb[i]) * r4; fa[i] = c1 * d1 + c2 * d2 * r5, fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5, fb[j] = a1 * b2 + a2 * b1; } fft(fa, lg), fft(fb, lg); std::vector<T> ans(need); for (std::size_t i = 0; i < need; i++) { const T aa = (T)std::floor(fa[i].x + 0.5), bb = (T)std::floor(fb[i].x + 0.5), cc = (T)std::floor(fa[i].y + 0.5); ans[i] = (T)(aa + ((bb % mod) << 15) + ((cc % mod) << 30)) % mod; } return ans; } }; //!============================================!// //! 8888ba.88ba oo !// //! 88 '8b '8b !// //! 88 88 88 .d8888b. dP 88d888b. !// //! 88 88 88 88' '88 88 88' '88 !// //! 88 88 88 88. .88 88 88 88 !// //! dP dP dP '88888P8 dP dP dP !// //!============================================!// int main() { int N, M, D1, D2; std::cin >> N >> M >> D1 >> D2; const ll D = D2 - D1, L = M - D1 * (N - 1) - 1; if (L < 0) { return std::cout << 0 << std::endl, 0; } using mll = ModInt<ll, MOD<ll>>; ModComb<ll, MOD<ll>> modcomb(1000000); std::vector<ll> bunbo(L + 1), bunsi(L + 1, 0); for (int i = 0; i <= N - 1 and i * (D + 1) <= L; i++) { bunsi[i * (D + 1)] = (modcomb.comb(N - 1, i) * ((N - i - 1) % 2 == 0 ? 1 : -1))(); } for (int i = 0; i <= N - 1 and i <= L; i++) { bunbo[i] = (modcomb.comb(N - 1, i) * ((N - i - 1) % 2 == 0 ? 1 : -1))(); } std::vector<ll> inv(L + 1, 0); inv[0] = (mll(1) / bunbo[0])(); FFT<double, 20> fft; for (int i = 1; i <= L; i *= 2) { auto a = fft.convolute(inv, inv, MOD<ll>); if (a.size() > L + 1) { a.resize(L + 1); } auto b = fft.convolute(a, bunbo, MOD<ll>); for (int i = 0; i <= L; i++) { inv[i] = (MOD<ll> + (inv[i] * 2 - b[i]) % MOD<ll>) % MOD<ll>; } if (inv.size() > L + 1) { inv.resize(L + 1); } } auto mul = fft.convolute(inv, bunsi, MOD<ll>); mul.resize(L + 1); ll ans = 0; for (int i = 0; i <= L; i++) { (ans += mul[i] * (L - i + 1)) %= MOD<ll>; } std::cout << ans << std::endl; return 0; }