結果
| 問題 |
No.812 Change of Class
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-03-20 01:49:00 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 884 ms / 4,000 ms |
| コード長 | 4,746 bytes |
| コンパイル時間 | 11,931 ms |
| コンパイル使用メモリ | 403,004 KB |
| 実行使用メモリ | 19,644 KB |
| 最終ジャッジ日時 | 2025-04-19 23:02:12 |
| 合計ジャッジ時間 | 28,207 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 60 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
/*
* Dijkstra's algorithm.
* Verified by: AtCoder ABC035 (http://abc035.contest.atcoder.jp/submissions/676539)
*/
struct Dijkstra {
edges: Vec<Vec<(usize, i64)>>, // adjacent list representation
}
/*
* Code from https://doc.rust-lang.org/std/collections/binary_heap/
*/
#[derive(Copy, Clone, Eq, PartialEq)]
struct State {
cost: i64,
position: usize,
}
// The priority queue depends on `Ord`.
// Explicitly implement the trait so the queue becomes a min-heap
// instead of a max-heap.
impl Ord for State {
fn cmp(&self, other: &State) -> Ordering {
// Notice that the we flip the ordering here
match other.cost.cmp(&self.cost) {
std::cmp::Ordering::Equal => other.position.cmp(&self.position),
x => x,
}
}
}
// `PartialOrd` needs to be implemented as well.
impl PartialOrd for State {
fn partial_cmp(&self, other: &State) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Dijkstra {
fn new(n: usize) -> Self {
Dijkstra { edges: vec![Vec::new(); n] }
}
fn add_edge(&mut self, from: usize, to: usize, cost: i64) {
self.edges[from].push((to, cost));
}
/*
* This function returns a Vec consisting of the distances from vertex source.
*/
fn solve(&self, source: usize, inf: i64) -> Vec<i64> {
let n = self.edges.len();
let mut d = vec![inf; n];
let mut que = std::collections::BinaryHeap::new();
que.push(State {cost: 0, position: source});
while let Some(State {cost, position: pos}) = que.pop() {
if d[pos] <= cost {
continue;
}
d[pos] = cost;
for adj in &self.edges[pos] {
que.push(State {cost: cost + adj.1, position: adj.0});
}
}
return d;
}
}
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (write!(out,$($format)*).unwrap());
}
input! {
n: usize,
pq: [(usize1, usize1)],
a: [usize1],
}
// Verification
assert!(1 <= n && n <= 100000);
assert!(pq.len() <= 100000);
let mut seen = HashSet::new();
for &(p, q) in &pq {
assert!(p < q);
assert_eq!(seen.get(&(p, q)), None);
seen.insert((p, q));
}
// solve, O(qm log n)
const INF: i64 = 1 << 48;
let mut dijk = Dijkstra::new(n);
for &(p, q) in &pq {
dijk.add_edge(p, q, 1);
dijk.add_edge(q, p, 1);
}
for &a in &a {
let dist = dijk.solve(a, INF);
let mut ma = 0;
let mut count = 0;
for i in 0..n {
if dist[i] < INF {
ma = max(ma, dist[i]);
count += 1;
}
}
let mut turn = 0;
while ma > 1 << turn {
turn += 1;
}
puts!("{} {}\n", count - 1, turn);
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}