結果
問題 | No.316 もっと刺激的なFizzBuzzをください |
ユーザー | taotao54321 |
提出日時 | 2019-03-20 19:13:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 1,000 ms |
コード長 | 10,291 bytes |
コンパイル時間 | 2,361 ms |
コンパイル使用メモリ | 211,432 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-19 00:47:19 |
合計ジャッジ時間 | 3,544 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 3 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 3 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
ソースコード
/** * */ // {{{ header #include <bits/stdc++.h> using namespace std; using i8 = int8_t; using u8 = uint8_t; using i16 = int16_t; using u16 = uint16_t; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; using i128 = __int128_t; using u128 = __uint128_t; using f32 = float; using f64 = double; using f80 = __float80; using f128 = __float128; // }}} constexpr i64 INF = 1'010'000'000'000'000'000LL; constexpr i64 MOD = 1'000'000'007LL; constexpr f64 EPS = 1e-12; constexpr f64 PI = 3.14159265358979323846; // {{{ util #define FOR(i, start, end) for(i64 i = (start), i##_end=(end); i < i##_end; ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(begin(cccc), end(cccc), ## __VA_ARGS__); })(c)) #define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\ auto iiii = llll <= rrrr ? begin(cccc)+llll : end(cccc);\ auto jjjj = llll <= rrrr ? begin(cccc)+rrrr : end(cccc);\ return (f)(iiii, jjjj, ## __VA_ARGS__);\ })(c,l,r)) #define GENERIC(f) ([](auto&&... args) -> decltype(auto) { return (f)(forward<decltype(args)>(args)...); }) template<typename F> class FixPoint { public: explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {} template<typename... Args> constexpr decltype(auto) operator()(Args&&... args) const { return f_(*this, forward<Args>(args)...); } private: const F f_; }; template<typename F> decltype(auto) FIX(F&& f) { return FixPoint<F>(forward<F>(f)); } template<typename C> i64 SIZE(const C& c) { return static_cast<i64>(c.size()); } template<typename T, size_t N> i64 SIZE(const T (&)[N]) { return static_cast<i64>(N); } bool is_odd (i64 x) { return x % 2 != 0; } bool is_even(i64 x) { return x % 2 == 0; } template<typename T> i64 cmp(T x, T y) { return (y<x) - (x<y); } template<typename T> i64 sgn(T x) { return cmp(x, T(0)); } // Haskell の divMod と同じ pair<i64,i64> divmod(i64 a, i64 b) { i64 q = a / b; i64 r = a % b; if((b>0 && r<0) || (b<0 && r>0)) { --q; r += b; } return {q,r}; } i64 div_ceil(i64 a, i64 b) { i64 q = a / b; i64 r = a % b; if((b>0 && r>0) || (b<0 && r<0)) ++q; return q; } i64 div_floor(i64 a, i64 b) { return divmod(a,b).first; } i64 modulo(i64 a, i64 b) { return divmod(a,b).second; } bool feq(f64 x, f64 y, f64 eps=EPS) { return fabs(x-y) < eps; } template<typename T, typename U> bool chmax(T& xmax, const U& x) { if(xmax < x) { xmax = x; return true; } return false; } template<typename T, typename U> bool chmin(T& xmin, const U& x) { if(x < xmin) { xmin = x; return true; } return false; } template<typename InputIt> auto SUM(InputIt first, InputIt last) { using T = typename iterator_traits<InputIt>::value_type; return accumulate(first, last, T()); } template<typename ForwardIt, typename UnaryOperation> ForwardIt transform_self(ForwardIt first, ForwardIt last, UnaryOperation op) { return transform(first, last, first, op); } template<typename C> void UNIQ(C& c) { c.erase(ALL(unique,c), end(c)); } template<typename BinaryFunc, typename UnaryFunc> auto ON(BinaryFunc bf, UnaryFunc uf) { return [bf,uf](const auto& x, const auto& y) { return bf(uf(x), uf(y)); }; } template<typename F> auto LT_ON(F f) { return ON(less<>(), f); } template<typename F> auto GT_ON(F f) { return ON(greater<>(), f); } char digit_chr(i64 n) { return static_cast<char>('0' + n); } i64 digit_ord(char c) { return c - '0'; } char lower_chr(i64 n) { return static_cast<char>('a' + n); } i64 lower_ord(char c) { return c - 'a'; } char upper_chr(i64 n) { return static_cast<char>('A' + n); } i64 upper_ord(char c) { return c - 'A'; } template<typename T> void FROM_STRING(const string& s, T& x) { istringstream in(s); in >> x; } template<typename T> string TO_STRING(const T& x) { ostringstream out; out << x; return out.str(); } template<typename InputIt> string JOIN(InputIt first, InputIt last, const string& sep) { ostringstream out; while(first != last) { out << *first++; if(first != last) out << sep; } return out.str(); } template<typename T> void RD(T& x) { cin >> x; #ifdef PROCON_LOCAL assert(cin); #endif } template<typename T> void RD(vector<T>& v, i64 n) { v.reserve(n); REP(_, n) { T e; RD(e); v.emplace_back(e); } } template<typename T> ostream& operator<<(ostream& out, const vector<T>& v) { for(auto first = begin(v), it = first; it != end(v); ++it) { if(it != first) out << ' '; out << *it; } return out; } template<typename T1, typename T2> ostream& operator<<(ostream& out, const pair<T1,T2>& p) { return out << '(' << p.first << ',' << p.second << ')'; } void PRINT() {} template<typename T, typename... TS> void PRINT(const T& x, const TS& ...args) { cout << x; if(sizeof...(args)) { cout << ' '; PRINT(args...); } } template<typename... TS> void PRINTLN(const TS& ...args) { PRINT(args...); cout << '\n'; } template<typename T> void DBG_IMPL(i64 line, const char* expr, const T& value) { #ifdef PROCON_LOCAL cerr << "[L " << line << "]: "; cerr << expr << " = " << value << "\n"; #endif } #define DBG(expr) DBG_IMPL(__LINE__, #expr, (expr)) // }}} // {{{ init struct ProconInit { static constexpr int IOS_PREC = 15; static constexpr bool AUTOFLUSH = false; ProconInit() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(IOS_PREC); #ifdef PROCON_LOCAL cerr << fixed << setprecision(IOS_PREC); #endif if(AUTOFLUSH) cout << unitbuf; } } PROCON_INIT; // }}} // {{{ num // 事前条件: a >= 0, b >= 0 i64 gcd_impl(i64 a, i64 b) { if(b == 0) return a; return gcd_impl(b, a%b); } // gcd(0,0) = 0 i64 gcd(i64 a, i64 b) { return gcd_impl(abs(a), abs(b)); } // lcm(0,x) は未定義 i64 lcm(i64 a, i64 b) { assert(a != 0 && b != 0); a = abs(a); b = abs(b); return a / gcd_impl(a,b) * b; } // 事前条件: a >= 0, b >= 0 i64 extgcd_impl(i64 a, i64 b, i64& x, i64& y) { if(b == 0) { x = 1; y = 0; return a; } i64 g = extgcd_impl(b, a%b, y, x); y -= a/b * x; return g; } // g=gcd(a,b), および ax+by=g の整数解 (x0,y0) を求める // (g,x0,y0) を返す // g!=0 のとき、一般解は (x,y) = (x0+m*b/g, y0-m*a/g) で与えられる(mは整数) tuple<i64,i64,i64> extgcd(i64 a, i64 b) { i64 x, y; i64 g = extgcd_impl(abs(a), abs(b), x, y); x *= sgn(a); y *= sgn(b); return make_tuple(g, x, y); } // 素因数分解 // (素因数,指数) のリストを返す vector<pair<i64,i64>> factorize(i64 n) { assert(n >= 2); vector<pair<i64,i64>> res; i64 m = n; for(i64 i = 2; i*i <= n; ++i) { if(m == 1) break; i64 e = 0; while(m % i == 0) { ++e; m /= i; } if(e) res.emplace_back(i, e); } if(m > 1) res.emplace_back(m, 1); return res; } // 二分累乗 template<typename Monoid> Monoid pow_binary(Monoid x, i64 e) { assert(e >= 0); Monoid res(1); // 行列などの場合はここを適当に変える Monoid cur = x; while(e > 0) { if(e & 1) res *= cur; cur *= cur; e >>= 1; } return res; } // mod m での a の逆元 // a ⊥ m でなければならない i64 inv_mod(i64 a, i64 m) { i64 g,x0; tie(g,x0,ignore) = extgcd(a, m); assert(g == 1); return modulo(x0, m); } template<i64 P> struct ModPT { static_assert(P >= 2, "P must be a prime"); i64 v_; // [0,P) ModPT() : v_(0) {} ModPT(i64 v) : v_(modulo(v,P)) {} const ModPT operator-() const { return ModPT(-v_); } ModPT& operator+=(ModPT rhs) { v_ += rhs.v_; v_ %= P; return *this; } ModPT& operator-=(ModPT rhs) { v_ += P; v_ -= rhs.v_; v_ %= P; return *this; } ModPT& operator*=(ModPT rhs) { v_ *= rhs.v_; v_ %= P; return *this; } ModPT inv() const { return ModPT(inv_mod(v_,P)); } }; template<i64 P> const ModPT<P> operator+(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) += rhs; } template<i64 P> const ModPT<P> operator+(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) += rhs; } template<i64 P> const ModPT<P> operator+(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) += lhs; } template<i64 P> const ModPT<P> operator-(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) -= rhs; } template<i64 P> const ModPT<P> operator-(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) -= rhs; } template<i64 P> const ModPT<P> operator-(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) -= lhs; } template<i64 P> const ModPT<P> operator*(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) *= rhs; } template<i64 P> const ModPT<P> operator*(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) *= rhs; } template<i64 P> const ModPT<P> operator*(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) *= lhs; } template<i64 P> ostream& operator<<(ostream& out, ModPT<P> x) { return out << x.v_; } using ModP = ModPT<MOD>; // F(0) = 0 // F(1) = 1 // F(n) = F(n-1) + F(n-2) // // // decltype(auto) で受けると SIZE() が使える (auto だとポインタになってしまう) // decltype(auto) fib = fibonacci<1000>(); template<size_t N> ModP (&fibonacci())[N] { static_assert(N >= 2, ""); static ModP fib[N]; fib[0] = 0; fib[1] = 1; FOR(i, 2, N) { fib[i] = fib[i-1] + fib[i-2]; } return fib; } // }}} //-------------------------------------------------------------------- void solve() { i64 N; RD(N); i64 A, B, C; RD(A); RD(B); RD(C); i64 ans = 0; ans += N/A + N/B + N/C; ans -= N/lcm(A,B) + N/lcm(B,C) + N/lcm(C,A); ans += N/lcm(lcm(A,B),C); // * MOD はとった? // * 違うやつ提出してない? // * 違うやつテストしてない? PRINTLN(ans); } signed main() { solve(); return 0; }