結果
問題 | No.316 もっと刺激的なFizzBuzzをください |
ユーザー |
|
提出日時 | 2019-03-20 19:13:24 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 1,000 ms |
コード長 | 10,291 bytes |
コンパイル時間 | 1,905 ms |
コンパイル使用メモリ | 201,060 KB |
最終ジャッジ日時 | 2025-01-06 23:38:02 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 33 |
ソースコード
/****/// {{{ header#include <bits/stdc++.h>using namespace std;using i8 = int8_t;using u8 = uint8_t;using i16 = int16_t;using u16 = uint16_t;using i32 = int32_t;using u32 = uint32_t;using i64 = int64_t;using u64 = uint64_t;using i128 = __int128_t;using u128 = __uint128_t;using f32 = float;using f64 = double;using f80 = __float80;using f128 = __float128;// }}}constexpr i64 INF = 1'010'000'000'000'000'000LL;constexpr i64 MOD = 1'000'000'007LL;constexpr f64 EPS = 1e-12;constexpr f64 PI = 3.14159265358979323846;// {{{ util#define FOR(i, start, end) for(i64 i = (start), i##_end=(end); i < i##_end; ++i)#define REP(i, n) FOR(i, 0, n)#define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(begin(cccc), end(cccc), ## __VA_ARGS__); })(c))#define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\auto iiii = llll <= rrrr ? begin(cccc)+llll : end(cccc);\auto jjjj = llll <= rrrr ? begin(cccc)+rrrr : end(cccc);\return (f)(iiii, jjjj, ## __VA_ARGS__);\})(c,l,r))#define GENERIC(f) ([](auto&&... args) -> decltype(auto) { return (f)(forward<decltype(args)>(args)...); })template<typename F>class FixPoint {public:explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {}template<typename... Args>constexpr decltype(auto) operator()(Args&&... args) const {return f_(*this, forward<Args>(args)...);}private:const F f_;};template<typename F>decltype(auto) FIX(F&& f) {return FixPoint<F>(forward<F>(f));}template<typename C>i64 SIZE(const C& c) { return static_cast<i64>(c.size()); }template<typename T, size_t N>i64 SIZE(const T (&)[N]) { return static_cast<i64>(N); }bool is_odd (i64 x) { return x % 2 != 0; }bool is_even(i64 x) { return x % 2 == 0; }template<typename T> i64 cmp(T x, T y) { return (y<x) - (x<y); }template<typename T> i64 sgn(T x) { return cmp(x, T(0)); }// Haskell の divMod と同じpair<i64,i64> divmod(i64 a, i64 b) {i64 q = a / b;i64 r = a % b;if((b>0 && r<0) || (b<0 && r>0)) {--q;r += b;}return {q,r};}i64 div_ceil(i64 a, i64 b) {i64 q = a / b;i64 r = a % b;if((b>0 && r>0) || (b<0 && r<0))++q;return q;}i64 div_floor(i64 a, i64 b) {return divmod(a,b).first;}i64 modulo(i64 a, i64 b) {return divmod(a,b).second;}bool feq(f64 x, f64 y, f64 eps=EPS) {return fabs(x-y) < eps;}template<typename T, typename U>bool chmax(T& xmax, const U& x) {if(xmax < x) {xmax = x;return true;}return false;}template<typename T, typename U>bool chmin(T& xmin, const U& x) {if(x < xmin) {xmin = x;return true;}return false;}template<typename InputIt>auto SUM(InputIt first, InputIt last) {using T = typename iterator_traits<InputIt>::value_type;return accumulate(first, last, T());}template<typename ForwardIt, typename UnaryOperation>ForwardIt transform_self(ForwardIt first, ForwardIt last, UnaryOperation op) {return transform(first, last, first, op);}template<typename C>void UNIQ(C& c) {c.erase(ALL(unique,c), end(c));}template<typename BinaryFunc, typename UnaryFunc>auto ON(BinaryFunc bf, UnaryFunc uf) {return [bf,uf](const auto& x, const auto& y) {return bf(uf(x), uf(y));};}template<typename F>auto LT_ON(F f) { return ON(less<>(), f); }template<typename F>auto GT_ON(F f) { return ON(greater<>(), f); }char digit_chr(i64 n) {return static_cast<char>('0' + n);}i64 digit_ord(char c) {return c - '0';}char lower_chr(i64 n) {return static_cast<char>('a' + n);}i64 lower_ord(char c) {return c - 'a';}char upper_chr(i64 n) {return static_cast<char>('A' + n);}i64 upper_ord(char c) {return c - 'A';}template<typename T>void FROM_STRING(const string& s, T& x) {istringstream in(s);in >> x;}template<typename T>string TO_STRING(const T& x) {ostringstream out;out << x;return out.str();}template<typename InputIt>string JOIN(InputIt first, InputIt last, const string& sep) {ostringstream out;while(first != last) {out << *first++;if(first != last)out << sep;}return out.str();}template<typename T>void RD(T& x) {cin >> x;#ifdef PROCON_LOCALassert(cin);#endif}template<typename T>void RD(vector<T>& v, i64 n) {v.reserve(n);REP(_, n) {T e; RD(e);v.emplace_back(e);}}template<typename T>ostream& operator<<(ostream& out, const vector<T>& v) {for(auto first = begin(v), it = first; it != end(v); ++it) {if(it != first)out << ' ';out << *it;}return out;}template<typename T1, typename T2>ostream& operator<<(ostream& out, const pair<T1,T2>& p) {return out << '(' << p.first << ',' << p.second << ')';}void PRINT() {}template<typename T, typename... TS>void PRINT(const T& x, const TS& ...args) {cout << x;if(sizeof...(args)) {cout << ' ';PRINT(args...);}}template<typename... TS>void PRINTLN(const TS& ...args) {PRINT(args...);cout << '\n';}template<typename T>void DBG_IMPL(i64 line, const char* expr, const T& value) {#ifdef PROCON_LOCALcerr << "[L " << line << "]: ";cerr << expr << " = " << value << "\n";#endif}#define DBG(expr) DBG_IMPL(__LINE__, #expr, (expr))// }}}// {{{ initstruct ProconInit {static constexpr int IOS_PREC = 15;static constexpr bool AUTOFLUSH = false;ProconInit() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(IOS_PREC);#ifdef PROCON_LOCALcerr << fixed << setprecision(IOS_PREC);#endifif(AUTOFLUSH)cout << unitbuf;}} PROCON_INIT;// }}}// {{{ num// 事前条件: a >= 0, b >= 0i64 gcd_impl(i64 a, i64 b) {if(b == 0) return a;return gcd_impl(b, a%b);}// gcd(0,0) = 0i64 gcd(i64 a, i64 b) {return gcd_impl(abs(a), abs(b));}// lcm(0,x) は未定義i64 lcm(i64 a, i64 b) {assert(a != 0 && b != 0);a = abs(a);b = abs(b);return a / gcd_impl(a,b) * b;}// 事前条件: a >= 0, b >= 0i64 extgcd_impl(i64 a, i64 b, i64& x, i64& y) {if(b == 0) {x = 1; y = 0;return a;}i64 g = extgcd_impl(b, a%b, y, x);y -= a/b * x;return g;}// g=gcd(a,b), および ax+by=g の整数解 (x0,y0) を求める// (g,x0,y0) を返す// g!=0 のとき、一般解は (x,y) = (x0+m*b/g, y0-m*a/g) で与えられる(mは整数)tuple<i64,i64,i64> extgcd(i64 a, i64 b) {i64 x, y;i64 g = extgcd_impl(abs(a), abs(b), x, y);x *= sgn(a);y *= sgn(b);return make_tuple(g, x, y);}// 素因数分解// (素因数,指数) のリストを返すvector<pair<i64,i64>> factorize(i64 n) {assert(n >= 2);vector<pair<i64,i64>> res;i64 m = n;for(i64 i = 2; i*i <= n; ++i) {if(m == 1) break;i64 e = 0;while(m % i == 0) {++e;m /= i;}if(e) res.emplace_back(i, e);}if(m > 1) res.emplace_back(m, 1);return res;}// 二分累乗template<typename Monoid>Monoid pow_binary(Monoid x, i64 e) {assert(e >= 0);Monoid res(1); // 行列などの場合はここを適当に変えるMonoid cur = x;while(e > 0) {if(e & 1)res *= cur;cur *= cur;e >>= 1;}return res;}// mod m での a の逆元// a ⊥ m でなければならないi64 inv_mod(i64 a, i64 m) {i64 g,x0; tie(g,x0,ignore) = extgcd(a, m);assert(g == 1);return modulo(x0, m);}template<i64 P>struct ModPT {static_assert(P >= 2, "P must be a prime");i64 v_; // [0,P)ModPT() : v_(0) {}ModPT(i64 v) : v_(modulo(v,P)) {}const ModPT operator-() const {return ModPT(-v_);}ModPT& operator+=(ModPT rhs) {v_ += rhs.v_;v_ %= P;return *this;}ModPT& operator-=(ModPT rhs) {v_ += P;v_ -= rhs.v_;v_ %= P;return *this;}ModPT& operator*=(ModPT rhs) {v_ *= rhs.v_;v_ %= P;return *this;}ModPT inv() const {return ModPT(inv_mod(v_,P));}};template<i64 P>const ModPT<P> operator+(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) += rhs; }template<i64 P>const ModPT<P> operator+(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) += rhs; }template<i64 P>const ModPT<P> operator+(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) += lhs; }template<i64 P>const ModPT<P> operator-(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) -= rhs; }template<i64 P>const ModPT<P> operator-(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) -= rhs; }template<i64 P>const ModPT<P> operator-(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) -= lhs; }template<i64 P>const ModPT<P> operator*(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) *= rhs; }template<i64 P>const ModPT<P> operator*(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) *= rhs; }template<i64 P>const ModPT<P> operator*(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) *= lhs; }template<i64 P>ostream& operator<<(ostream& out, ModPT<P> x) {return out << x.v_;}using ModP = ModPT<MOD>;// F(0) = 0// F(1) = 1// F(n) = F(n-1) + F(n-2)//// // decltype(auto) で受けると SIZE() が使える (auto だとポインタになってしまう)// decltype(auto) fib = fibonacci<1000>();template<size_t N>ModP (&fibonacci())[N] {static_assert(N >= 2, "");static ModP fib[N];fib[0] = 0;fib[1] = 1;FOR(i, 2, N) {fib[i] = fib[i-1] + fib[i-2];}return fib;}// }}}//--------------------------------------------------------------------void solve() {i64 N; RD(N);i64 A, B, C; RD(A); RD(B); RD(C);i64 ans = 0;ans += N/A + N/B + N/C;ans -= N/lcm(A,B) + N/lcm(B,C) + N/lcm(C,A);ans += N/lcm(lcm(A,B),C);// * MOD はとった?// * 違うやつ提出してない?// * 違うやつテストしてない?PRINTLN(ans);}signed main() {solve();return 0;}