結果

問題 No.316 もっと刺激的なFizzBuzzをください
ユーザー taotao54321
提出日時 2019-03-20 19:13:24
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 1,000 ms
コード長 10,291 bytes
コンパイル時間 1,905 ms
コンパイル使用メモリ 201,060 KB
最終ジャッジ日時 2025-01-06 23:38:02
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
*
*/
// {{{ header
#include <bits/stdc++.h>
using namespace std;
using i8 = int8_t;
using u8 = uint8_t;
using i16 = int16_t;
using u16 = uint16_t;
using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
using f32 = float;
using f64 = double;
using f80 = __float80;
using f128 = __float128;
// }}}
constexpr i64 INF = 1'010'000'000'000'000'000LL;
constexpr i64 MOD = 1'000'000'007LL;
constexpr f64 EPS = 1e-12;
constexpr f64 PI = 3.14159265358979323846;
// {{{ util
#define FOR(i, start, end) for(i64 i = (start), i##_end=(end); i < i##_end; ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(begin(cccc), end(cccc), ## __VA_ARGS__); })(c))
#define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\
auto iiii = llll <= rrrr ? begin(cccc)+llll : end(cccc);\
auto jjjj = llll <= rrrr ? begin(cccc)+rrrr : end(cccc);\
return (f)(iiii, jjjj, ## __VA_ARGS__);\
})(c,l,r))
#define GENERIC(f) ([](auto&&... args) -> decltype(auto) { return (f)(forward<decltype(args)>(args)...); })
template<typename F>
class FixPoint {
public:
explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {}
template<typename... Args>
constexpr decltype(auto) operator()(Args&&... args) const {
return f_(*this, forward<Args>(args)...);
}
private:
const F f_;
};
template<typename F>
decltype(auto) FIX(F&& f) {
return FixPoint<F>(forward<F>(f));
}
template<typename C>
i64 SIZE(const C& c) { return static_cast<i64>(c.size()); }
template<typename T, size_t N>
i64 SIZE(const T (&)[N]) { return static_cast<i64>(N); }
bool is_odd (i64 x) { return x % 2 != 0; }
bool is_even(i64 x) { return x % 2 == 0; }
template<typename T> i64 cmp(T x, T y) { return (y<x) - (x<y); }
template<typename T> i64 sgn(T x) { return cmp(x, T(0)); }
// Haskell divMod
pair<i64,i64> divmod(i64 a, i64 b) {
i64 q = a / b;
i64 r = a % b;
if((b>0 && r<0) || (b<0 && r>0)) {
--q;
r += b;
}
return {q,r};
}
i64 div_ceil(i64 a, i64 b) {
i64 q = a / b;
i64 r = a % b;
if((b>0 && r>0) || (b<0 && r<0))
++q;
return q;
}
i64 div_floor(i64 a, i64 b) {
return divmod(a,b).first;
}
i64 modulo(i64 a, i64 b) {
return divmod(a,b).second;
}
bool feq(f64 x, f64 y, f64 eps=EPS) {
return fabs(x-y) < eps;
}
template<typename T, typename U>
bool chmax(T& xmax, const U& x) {
if(xmax < x) {
xmax = x;
return true;
}
return false;
}
template<typename T, typename U>
bool chmin(T& xmin, const U& x) {
if(x < xmin) {
xmin = x;
return true;
}
return false;
}
template<typename InputIt>
auto SUM(InputIt first, InputIt last) {
using T = typename iterator_traits<InputIt>::value_type;
return accumulate(first, last, T());
}
template<typename ForwardIt, typename UnaryOperation>
ForwardIt transform_self(ForwardIt first, ForwardIt last, UnaryOperation op) {
return transform(first, last, first, op);
}
template<typename C>
void UNIQ(C& c) {
c.erase(ALL(unique,c), end(c));
}
template<typename BinaryFunc, typename UnaryFunc>
auto ON(BinaryFunc bf, UnaryFunc uf) {
return [bf,uf](const auto& x, const auto& y) {
return bf(uf(x), uf(y));
};
}
template<typename F>
auto LT_ON(F f) { return ON(less<>(), f); }
template<typename F>
auto GT_ON(F f) { return ON(greater<>(), f); }
char digit_chr(i64 n) {
return static_cast<char>('0' + n);
}
i64 digit_ord(char c) {
return c - '0';
}
char lower_chr(i64 n) {
return static_cast<char>('a' + n);
}
i64 lower_ord(char c) {
return c - 'a';
}
char upper_chr(i64 n) {
return static_cast<char>('A' + n);
}
i64 upper_ord(char c) {
return c - 'A';
}
template<typename T>
void FROM_STRING(const string& s, T& x) {
istringstream in(s);
in >> x;
}
template<typename T>
string TO_STRING(const T& x) {
ostringstream out;
out << x;
return out.str();
}
template<typename InputIt>
string JOIN(InputIt first, InputIt last, const string& sep) {
ostringstream out;
while(first != last) {
out << *first++;
if(first != last)
out << sep;
}
return out.str();
}
template<typename T>
void RD(T& x) {
cin >> x;
#ifdef PROCON_LOCAL
assert(cin);
#endif
}
template<typename T>
void RD(vector<T>& v, i64 n) {
v.reserve(n);
REP(_, n) {
T e; RD(e);
v.emplace_back(e);
}
}
template<typename T>
ostream& operator<<(ostream& out, const vector<T>& v) {
for(auto first = begin(v), it = first; it != end(v); ++it) {
if(it != first)
out << ' ';
out << *it;
}
return out;
}
template<typename T1, typename T2>
ostream& operator<<(ostream& out, const pair<T1,T2>& p) {
return out << '(' << p.first << ',' << p.second << ')';
}
void PRINT() {}
template<typename T, typename... TS>
void PRINT(const T& x, const TS& ...args) {
cout << x;
if(sizeof...(args)) {
cout << ' ';
PRINT(args...);
}
}
template<typename... TS>
void PRINTLN(const TS& ...args) {
PRINT(args...);
cout << '\n';
}
template<typename T>
void DBG_IMPL(i64 line, const char* expr, const T& value) {
#ifdef PROCON_LOCAL
cerr << "[L " << line << "]: ";
cerr << expr << " = " << value << "\n";
#endif
}
#define DBG(expr) DBG_IMPL(__LINE__, #expr, (expr))
// }}}
// {{{ init
struct ProconInit {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
ProconInit() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(IOS_PREC);
#ifdef PROCON_LOCAL
cerr << fixed << setprecision(IOS_PREC);
#endif
if(AUTOFLUSH)
cout << unitbuf;
}
} PROCON_INIT;
// }}}
// {{{ num
// : a >= 0, b >= 0
i64 gcd_impl(i64 a, i64 b) {
if(b == 0) return a;
return gcd_impl(b, a%b);
}
// gcd(0,0) = 0
i64 gcd(i64 a, i64 b) {
return gcd_impl(abs(a), abs(b));
}
// lcm(0,x)
i64 lcm(i64 a, i64 b) {
assert(a != 0 && b != 0);
a = abs(a);
b = abs(b);
return a / gcd_impl(a,b) * b;
}
// : a >= 0, b >= 0
i64 extgcd_impl(i64 a, i64 b, i64& x, i64& y) {
if(b == 0) {
x = 1; y = 0;
return a;
}
i64 g = extgcd_impl(b, a%b, y, x);
y -= a/b * x;
return g;
}
// g=gcd(a,b), ax+by=g (x0,y0)
// (g,x0,y0)
// g!=0 (x,y) = (x0+m*b/g, y0-m*a/g) (m)
tuple<i64,i64,i64> extgcd(i64 a, i64 b) {
i64 x, y;
i64 g = extgcd_impl(abs(a), abs(b), x, y);
x *= sgn(a);
y *= sgn(b);
return make_tuple(g, x, y);
}
//
// (,)
vector<pair<i64,i64>> factorize(i64 n) {
assert(n >= 2);
vector<pair<i64,i64>> res;
i64 m = n;
for(i64 i = 2; i*i <= n; ++i) {
if(m == 1) break;
i64 e = 0;
while(m % i == 0) {
++e;
m /= i;
}
if(e) res.emplace_back(i, e);
}
if(m > 1) res.emplace_back(m, 1);
return res;
}
//
template<typename Monoid>
Monoid pow_binary(Monoid x, i64 e) {
assert(e >= 0);
Monoid res(1); //
Monoid cur = x;
while(e > 0) {
if(e & 1)
res *= cur;
cur *= cur;
e >>= 1;
}
return res;
}
// mod m a
// a ⊥ m
i64 inv_mod(i64 a, i64 m) {
i64 g,x0; tie(g,x0,ignore) = extgcd(a, m);
assert(g == 1);
return modulo(x0, m);
}
template<i64 P>
struct ModPT {
static_assert(P >= 2, "P must be a prime");
i64 v_; // [0,P)
ModPT() : v_(0) {}
ModPT(i64 v) : v_(modulo(v,P)) {}
const ModPT operator-() const {
return ModPT(-v_);
}
ModPT& operator+=(ModPT rhs) {
v_ += rhs.v_;
v_ %= P;
return *this;
}
ModPT& operator-=(ModPT rhs) {
v_ += P;
v_ -= rhs.v_;
v_ %= P;
return *this;
}
ModPT& operator*=(ModPT rhs) {
v_ *= rhs.v_;
v_ %= P;
return *this;
}
ModPT inv() const {
return ModPT(inv_mod(v_,P));
}
};
template<i64 P>
const ModPT<P> operator+(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) += rhs; }
template<i64 P>
const ModPT<P> operator+(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) += rhs; }
template<i64 P>
const ModPT<P> operator+(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) += lhs; }
template<i64 P>
const ModPT<P> operator-(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) -= rhs; }
template<i64 P>
const ModPT<P> operator-(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) -= rhs; }
template<i64 P>
const ModPT<P> operator-(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) -= lhs; }
template<i64 P>
const ModPT<P> operator*(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) *= rhs; }
template<i64 P>
const ModPT<P> operator*(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) *= rhs; }
template<i64 P>
const ModPT<P> operator*(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) *= lhs; }
template<i64 P>
ostream& operator<<(ostream& out, ModPT<P> x) {
return out << x.v_;
}
using ModP = ModPT<MOD>;
// F(0) = 0
// F(1) = 1
// F(n) = F(n-1) + F(n-2)
//
// // decltype(auto) SIZE() 使 (auto )
// decltype(auto) fib = fibonacci<1000>();
template<size_t N>
ModP (&fibonacci())[N] {
static_assert(N >= 2, "");
static ModP fib[N];
fib[0] = 0;
fib[1] = 1;
FOR(i, 2, N) {
fib[i] = fib[i-1] + fib[i-2];
}
return fib;
}
// }}}
//--------------------------------------------------------------------
void solve() {
i64 N; RD(N);
i64 A, B, C; RD(A); RD(B); RD(C);
i64 ans = 0;
ans += N/A + N/B + N/C;
ans -= N/lcm(A,B) + N/lcm(B,C) + N/lcm(C,A);
ans += N/lcm(lcm(A,B),C);
// * MOD ?
// * ?
// * ?
PRINTLN(ans);
}
signed main() {
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0