結果
問題 | No.74 貯金箱の退屈 |
ユーザー | minami |
提出日時 | 2019-03-21 21:36:39 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 5,000 ms |
コード長 | 4,586 bytes |
コンパイル時間 | 1,899 ms |
コンパイル使用メモリ | 180,392 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-19 02:01:41 |
合計ジャッジ時間 | 2,964 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 3 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 3 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 3 ms
5,376 KB |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | AC | 3 ms
5,376 KB |
testcase_30 | AC | 3 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
ソースコード
#include "bits/stdc++.h" using namespace std; #ifdef _DEBUG #include "dump.hpp" #else #define dump(...) #endif //#define int long long #define rep(i,a,b) for(int i=(a);i<(b);i++) #define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--) #define all(c) begin(c),end(c) const int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f; const int MOD = 1'000'000'007; template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template<class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; } template<int MOD> struct ModInt { static const int kMod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % kMod; if (sigt < 0) sigt += kMod; x = sigt; } ModInt(signed long long sig) { int sigt = sig % kMod; if (sigt < 0) sigt += kMod; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= kMod) x -= kMod; return *this; } ModInt &operator-=(ModInt that) { if ((x += kMod - that.x) >= kMod) x -= kMod; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % kMod; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = kMod, u = 1, v = 0; while (b) { signed t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if (u < 0) u += kMod; ModInt res; res.x = (unsigned)u; return res; } }; template<int MOD> ostream &operator << (ostream &os, const ModInt<MOD> &m) { return os << m.x; } template<int MOD> istream &operator >> (istream &is, ModInt<MOD> &m) { signed long long s; is >> s; m = ModInt<MOD>(s); return is; }; using mint = ModInt<2>; mint pow(mint a, unsigned long long k) { mint r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; } vector<mint> fact, factinv; void precomputeFactorial(int N) { N = min(N, mint::kMod - 1); fact.resize(N + 1); factinv.resize(N + 1); fact[0] = 1; rep(i, 1, N + 1) fact[i] = fact[i - 1] * i; factinv[N] = fact[N].inverse(); for (int i = N; i >= 1; i--) factinv[i - 1] = factinv[i] * i; } mint combi(int n, int r) { if (n >= mint::kMod) return combi(n % mint::kMod, r % mint::kMod) * combi(n / mint::kMod, r / mint::kMod); return r > n ? 0 : fact[n] * factinv[n - r] * factinv[r]; } // ガウスの消去法(Gauss elimination) // O(n^3) // // Verified: // http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=3437138 // http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=3437187 using Num = mint; using Vec = vector<Num>; using Mat = vector<Vec>; tuple<bool, int, Vec> gaussianElimination(Mat A, Vec b) { const int n = A.size(), m = A[0].size(); int rank = 0, cj = 0; while (rank < n && cj < m) { // A[rank][cj] が最大になるように for (int i = rank + 1; i < n; i++) { if (A[i][cj].get() > A[rank][cj].get()) { A[i].swap(A[rank]); swap(b[i], b[rank]); } } if (A[rank][cj].get() > 0) { // 係数を 1 に Num d = A[rank][cj]; for (int j = 0; j < m; j++) A[rank][j] /= d; b[rank] /= d; // 前進消去(forward elimination) for (int i = rank + 1; i < n; i++) { Num k = A[i][cj]; for (int j = 0; j < m; j++) A[i][j] -= k * A[rank][j]; b[i] -= k * b[rank]; } rank++; } cj++; } // 0 != b[i] だったら不能 for (int i = rank; i < n; i++) if (b[i].get()) return make_tuple(false, rank, Vec()); // 不定 // rank != m // cj < m => n < m if (rank < m || cj < m) return make_tuple(true, rank, Vec()); // 後退代入(back substitution) for (int j = m - 1; j >= 0; j--) for (int i = 0; i < j; i++) b[i] -= b[j] * A[i][j]; return make_tuple(true, rank, b); } signed main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vector<int> D(N); rep(i, 0, N) { cin >> D[i]; } vector<int> W(N); rep(i, 0, N) { cin >> W[i]; } Mat A(N, Vec(N)); Vec b(N, 1); rep(i, 0, N) { int ai = (i + D[i] % N) % N; int bi = (i - D[i] % N + N) % N; if (ai == bi) { A[ai][i] = 1; } else { A[ai][i] = 1; A[bi][i] = 1; } if (W[i]) { b[i] = 0; } } auto res = gaussianElimination(A, b); if (get<0>(res)) { cout << "Yes" << endl; } else { cout << "No" << endl; } return 0; }