結果
| 問題 |
No.74 貯金箱の退屈
|
| コンテスト | |
| ユーザー |
minami
|
| 提出日時 | 2019-03-21 21:36:39 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 5,000 ms |
| コード長 | 4,586 bytes |
| コンパイル時間 | 1,899 ms |
| コンパイル使用メモリ | 180,392 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-19 02:01:41 |
| 合計ジャッジ時間 | 2,964 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#ifdef _DEBUG
#include "dump.hpp"
#else
#define dump(...)
#endif
//#define int long long
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--)
#define all(c) begin(c),end(c)
const int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;
const int MOD = 1'000'000'007;
template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; }
template<class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; }
template<int MOD>
struct ModInt {
static const int kMod = MOD;
unsigned x;
ModInt() : x(0) {}
ModInt(signed sig) { int sigt = sig % kMod; if (sigt < 0) sigt += kMod; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % kMod; if (sigt < 0) sigt += kMod; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if ((x += that.x) >= kMod) x -= kMod; return *this; }
ModInt &operator-=(ModInt that) { if ((x += kMod - that.x) >= kMod) x -= kMod; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % kMod; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
signed a = x, b = kMod, u = 1, v = 0;
while (b) {
signed t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
if (u < 0) u += kMod;
ModInt res; res.x = (unsigned)u;
return res;
}
};
template<int MOD>
ostream &operator << (ostream &os, const ModInt<MOD> &m) { return os << m.x; }
template<int MOD>
istream &operator >> (istream &is, ModInt<MOD> &m) { signed long long s; is >> s; m = ModInt<MOD>(s); return is; };
using mint = ModInt<2>;
mint pow(mint a, unsigned long long k) {
mint r = 1;
while (k) {
if (k & 1) r *= a;
a *= a;
k >>= 1;
}
return r;
}
vector<mint> fact, factinv;
void precomputeFactorial(int N) {
N = min(N, mint::kMod - 1);
fact.resize(N + 1); factinv.resize(N + 1);
fact[0] = 1;
rep(i, 1, N + 1) fact[i] = fact[i - 1] * i;
factinv[N] = fact[N].inverse();
for (int i = N; i >= 1; i--) factinv[i - 1] = factinv[i] * i;
}
mint combi(int n, int r) {
if (n >= mint::kMod)
return combi(n % mint::kMod, r % mint::kMod) * combi(n / mint::kMod, r / mint::kMod);
return r > n ? 0 : fact[n] * factinv[n - r] * factinv[r];
}
// ガウスの消去法(Gauss elimination)
// O(n^3)
//
// Verified:
// http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=3437138
// http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=3437187
using Num = mint;
using Vec = vector<Num>;
using Mat = vector<Vec>;
tuple<bool, int, Vec> gaussianElimination(Mat A, Vec b) {
const int n = A.size(), m = A[0].size();
int rank = 0, cj = 0;
while (rank < n && cj < m) {
// A[rank][cj] が最大になるように
for (int i = rank + 1; i < n; i++) {
if (A[i][cj].get() > A[rank][cj].get()) {
A[i].swap(A[rank]);
swap(b[i], b[rank]);
}
}
if (A[rank][cj].get() > 0) {
// 係数を 1 に
Num d = A[rank][cj];
for (int j = 0; j < m; j++)
A[rank][j] /= d;
b[rank] /= d;
// 前進消去(forward elimination)
for (int i = rank + 1; i < n; i++) {
Num k = A[i][cj];
for (int j = 0; j < m; j++)
A[i][j] -= k * A[rank][j];
b[i] -= k * b[rank];
}
rank++;
}
cj++;
}
// 0 != b[i] だったら不能
for (int i = rank; i < n; i++)
if (b[i].get())
return make_tuple(false, rank, Vec());
// 不定
// rank != m
// cj < m => n < m
if (rank < m || cj < m)
return make_tuple(true, rank, Vec());
// 後退代入(back substitution)
for (int j = m - 1; j >= 0; j--)
for (int i = 0; i < j; i++)
b[i] -= b[j] * A[i][j];
return make_tuple(true, rank, b);
}
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N; cin >> N;
vector<int> D(N); rep(i, 0, N) {
cin >> D[i];
}
vector<int> W(N); rep(i, 0, N) {
cin >> W[i];
}
Mat A(N, Vec(N));
Vec b(N, 1);
rep(i, 0, N) {
int ai = (i + D[i] % N) % N;
int bi = (i - D[i] % N + N) % N;
if (ai == bi) {
A[ai][i] = 1;
}
else {
A[ai][i] = 1;
A[bi][i] = 1;
}
if (W[i]) {
b[i] = 0;
}
}
auto res = gaussianElimination(A, b);
if (get<0>(res)) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
return 0;
}
minami