結果

問題 No.807 umg tours
ユーザー HaarHaar
提出日時 2019-03-22 21:58:25
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 530 ms / 4,000 ms
コード長 3,629 bytes
コンパイル時間 2,124 ms
コンパイル使用メモリ 183,284 KB
実行使用メモリ 54,304 KB
最終ジャッジ日時 2024-05-02 23:21:40
合計ジャッジ時間 9,008 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 239 ms
39,968 KB
testcase_12 AC 296 ms
32,316 KB
testcase_13 AC 383 ms
42,648 KB
testcase_14 AC 164 ms
20,588 KB
testcase_15 AC 126 ms
17,096 KB
testcase_16 AC 390 ms
45,264 KB
testcase_17 AC 530 ms
53,960 KB
testcase_18 AC 513 ms
54,256 KB
testcase_19 AC 504 ms
51,852 KB
testcase_20 AC 331 ms
30,280 KB
testcase_21 AC 340 ms
31,356 KB
testcase_22 AC 132 ms
15,360 KB
testcase_23 AC 101 ms
12,928 KB
testcase_24 AC 280 ms
43,028 KB
testcase_25 AC 519 ms
54,304 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define FOR(v, a, b) for(int v = (a); v < (b); ++v)
#define FORE(v, a, b) for(int v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(int v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define LLI long long int
#define fst first
#define snd second

#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(x)
#endif

#define gcd __gcd

using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}

template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}

template <typename T, typename U> T& chmin(T &a, const U &b){return a = (a<=b?a:b);}
template <typename T, typename U> T& chmax(T &a, const U &b){return a = (a>=b?a:b);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}

template <typename Cost = int> class Edge{
public:
  int from,to;
  Cost cost;
  Edge() {}
  Edge(int to, Cost cost): to(to), cost(cost){}
  Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}

  Edge rev(){return Edge(to,from,cost);}
  
  static bool cmp_to_lt(const Edge &e1, const Edge &e2){return e1.to < e2.to;}
  static bool cmp_cost_lt(const Edge &e1, const Edge &e2){return e1.cost < e2.cost;}
  static bool cmp_to_gt(const Edge &e1, const Edge &e2){return e1.to > e2.to;}
  static bool cmp_cost_gt(const Edge &e1, const Edge &e2){return e1.cost > e2.cost;}
  friend ostream& operator<<(ostream &os, const Edge &e){
    os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
    return os;
  }
};

template <typename T> using Graph = vector<vector<Edge<T>>>;


template <typename T>
vector<T> dijkstra(Graph<T> &graph, int src){
  int n = graph.size();
  vector<T> cost(n, -1);
  vector<bool> check(n, false);
  using pi = pair<T,int>;
  priority_queue<pi,vector<pi>,greater<pi>> pq;

  cost[src] = 0;
  pq.push(make_pair(0,src));

  while(!pq.empty()){
    int i; T d;
    tie(d,i) = pq.top(); pq.pop();

    if(check[i]) continue;
    check[i] = true;

    for(auto &e : graph[i]){
      if(cost[e.to] < 0){
	cost[e.to] = d + e.cost;
	pq.push(make_pair(cost[e.to], e.to));
      }else{
	if(cost[e.to] > d+e.cost){
	  cost[e.to] = min(cost[e.to], d + e.cost);
	  if(!check[e.to]) pq.push(make_pair(cost[e.to], e.to));
	}
      }
    }
  }
  
  return cost;
}


int main(){
  cin.tie(0);
  ios::sync_with_stdio(false);

  int n,m;
  while(cin >> n >> m){
    Graph<LLI> graph(n);
    REP(i,m){
      LLI a,b,c; cin >> a >> b >> c; --a, --b;
      graph[a].push_back(Edge<LLI>(a,b,c));
      graph[b].push_back(Edge<LLI>(b,a,c));
    }

    
    auto dist = dijkstra(graph, 0);
    dump(dist);

    Graph<LLI> graph2(2*n);
    REP(i,n){
      for(auto &e : graph[i]){
	graph2[i].push_back(e);
	graph2[i].push_back(Edge<LLI>(i,e.to+n,0));
	graph2[i+n].push_back(Edge<LLI>(i+n,e.to+n,e.cost));
      }
    }

    auto dist2 = dijkstra(graph2, 0);
    dump(dist2);
    
    REP(i,n){
      LLI ans;
      if(i==0) ans = 0;
      else ans = dist[i] + dist2[i+n];
      cout << ans << endl;
    }
  }
  
  return 0;
}
0