結果
| 問題 |
No.807 umg tours
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2019-03-23 00:10:49 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,937 bytes |
| コンパイル時間 | 1,311 ms |
| コンパイル使用メモリ | 32,000 KB |
| 実行使用メモリ | 21,836 KB |
| 最終ジャッジ日時 | 2024-09-19 07:11:12 |
| 合計ジャッジ時間 | 5,589 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 RE * 5 |
ソースコード
#include<stdio.h>
#include<stdlib.h>
#include<stdint.h>
#include<inttypes.h>
typedef struct binaryHeap{
void *array;
size_t heap_size;
size_t max_size;
size_t val_size;
int (*cmp) (const void *, const void *);
} heap;
heap* new_binary_heap (const size_t val_size, int (*cmpF) (const void *, const void *)) {
heap *h = (heap *) calloc (1, sizeof (heap));
h->array = malloc (val_size * (1 + 1));
h->heap_size = 0;
h->max_size = 1;
h->val_size = val_size;
h->cmp = cmpF;
return h;
}
int is_empty (const heap *h) {
return h->heap_size == 0;
}
void free_heap (heap *h) {
free (h->array);
free (h);
}
void init_heap (heap *h) {
h->heap_size = 0;
}
static void heap_func_swap (void * restrict a, void * restrict b, size_t val_size) {
uint8_t *p = (uint8_t *) a;
uint8_t *q = (uint8_t *) b;
while (val_size--) {
uint8_t tmp = *p;
*p++ = *q;
*q++ = tmp;
}
}
static void heap_func_copy (void * restrict dst, const void * restrict src, size_t val_size) {
uint8_t *p = (uint8_t *) src;
uint8_t *q = (uint8_t *) dst;
while (val_size--) {
*q++ = *p++;
}
}
void push (heap *h, const void *val) {
if (h->heap_size == h->max_size) {
h->max_size = 2 * h->max_size + 1;
h->array = realloc (h->array, h->val_size * (h->max_size + 1));
}
h->heap_size++;
uint8_t *array = (uint8_t *) h->array;
size_t k = h->heap_size;
const size_t val_size = h->val_size;
int (*cmp) (const void *, const void *) = h->cmp;
heap_func_copy(array + k * val_size, val, val_size);
while(k>1){
size_t parent = k / 2;
if (cmp (array + parent * val_size, array + k * val_size) <= 0) {
return;
}
heap_func_swap (array + parent * val_size, array + k * val_size, val_size);
k = parent;
}
}
void pop (heap *h, void *res) {
uint8_t *array = (uint8_t *) h->array;
const size_t val_size = h->val_size;
if (res != NULL) {
heap_func_copy (res, array + val_size, val_size);
}
heap_func_copy (array + val_size, array + val_size * h->heap_size, val_size);
h->heap_size--;
int (*cmp) (const void *, const void *) = h->cmp;
const size_t n = h->heap_size;
size_t k = 1;
while (k <= (n - 1) / 2) {
int c = cmp (array + val_size * 2 * k, array + val_size * (2 * k + 1));
size_t next = 2 * k + (c <= 0 ? 0 : 1);
if (cmp (array + val_size * k, array + val_size * next) <= 0) return;
heap_func_swap (array + val_size * k, array + val_size * next, val_size);
k = next;
}
if (2 * k <= n && cmp (array + val_size * k, array + val_size * 2 * k) > 0) {
heap_func_swap (array + val_size * k, array + val_size * 2 * k, val_size);
}
}
typedef struct directed_edge {
int32_t vertex;
int32_t cost;
int32_t next;
} graph_edge;
typedef struct directedGraph {
graph_edge *edge;
int32_t *start;
int32_t pointer;
int32_t vertex_num;
int32_t max_size;
} graph;
graph* newGraph (const int vertex_num) {
graph *g = (graph *) calloc (1, sizeof (graph));
g->edge = (graph_edge *) calloc (1, sizeof (graph_edge));
g->start = (int32_t *) calloc (vertex_num, sizeof (int32_t));
g->pointer = 0;
g->vertex_num = vertex_num;
g->max_size = 1;
for (int32_t i = 0; i < vertex_num; ++i) {
g->start[i] = -1;
}
return g;
}
void addEdge (graph *g, int32_t from, int32_t to, int32_t cost) {
if (g->pointer == g->max_size) {
g->max_size *= 2;
g->edge = (graph_edge *) realloc (g->edge, sizeof (graph_edge) * g->max_size);
}
g->edge[g->pointer] = (graph_edge) {to, cost, g->start[from]};
g->start[from] = g->pointer++;
}
typedef int32_t i32;
typedef int64_t i64;
typedef struct node {
i32 v;
i64 d;
} node;
int cmpNode (const void *a, const void *b) {
i64 d = ((node *)a)->d - ((node *)b)->d;
return d == 0 ? 0 : d < 0 ? -1 : 1;
}
void run (void) {
i32 n, m;
scanf("%" SCNi32 "%" SCNi32, &n, &m);
graph *g = newGraph (2 * n);
while (m--) {
i32 a, b, c;
scanf("%" SCNi32 "%" SCNi32 "%" SCNi32, &a, &b, &c);
a--;
b--;
addEdge (g, a, b, c);
addEdge (g, b, a, c);
addEdge (g, a + n, b + n, c);
addEdge (g, b + n, a + n, c);
addEdge (g, a, b + n, 0);
addEdge (g, b, a + n, 0);
}
i64 *dp = (i64 *) calloc (2 * n, sizeof (i64));
uint8_t *used = (uint8_t *) calloc (2 * n, sizeof (uint8_t));
for (i32 i = 1; i < n; ++i) {
dp[i] = (i64) 1000000000 * n;
dp[i + n] = dp[i];
}
heap *h = new_binary_heap (sizeof (node), cmpNode);
push (h, &((node){0, 0}));
while (!is_empty (h)) {
node t;
pop (h, &t);
const i32 v = t.v;
if (used[v]) continue;
used[v] = 1;
for (i32 p = g->start[v]; p != -1; p = g->edge[p].next) {
i32 u = g->edge[p].vertex;
i64 d = t.d + g->edge[p].cost;
if (d >= dp[u]) continue;
dp[u] = d;
push (h, &((node){u, d}));
}
}
for (i32 i = 0; i < n; ++i) {
printf("%" PRIi64 "\n", dp[i] + dp[i + n]);
}
}
int main (void) {
run ();
return 0;
}
akakimidori