結果
問題 | No.421 しろくろチョコレート |
ユーザー |
|
提出日時 | 2019-03-27 23:10:30 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 14 ms / 2,000 ms |
コード長 | 3,555 bytes |
コンパイル時間 | 1,973 ms |
コンパイル使用メモリ | 186,448 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-23 07:23:06 |
合計ジャッジ時間 | 3,641 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 65 |
ソースコード
#include <bits/stdc++.h> #define FOR(v, a, b) for(int v = (a); v < (b); ++v) #define FORE(v, a, b) for(int v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(int v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define LLI long long int #define fst first #define snd second #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(x) ((void)0) #endif using namespace std; #define gcd __gcd template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;} template <typename T, typename U> T& chmin(T &a, const U &b){return a = (a<=b?a:b);} template <typename T, typename U> T& chmax(T &a, const U &b){return a = (a>=b?a:b);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} template <typename T, T INF> class FordFulkerson{ struct edge{ int to, rev; T cap; }; int size; vector<vector<edge>> graph; vector<bool> visit; T dfs(int from, int to, T flow){ if(from == to) return flow; visit[from] = true; for(auto &e : graph[from]){ if(!visit[e.to] and e.cap > 0){ T d = dfs(e.to, to, min(flow, e.cap)); if(d > 0){ e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } public: FordFulkerson(int size): size(size), graph(size), visit(size){} void add_edge(int from, int to, const T &cap){ graph[from].push_back((edge){to, (int)graph[to].size(), cap}); graph[to].push_back((edge){from, (int)graph[from].size()-1, 0}); } T max_flow(int s, int t){ T ret = 0; while(1){ visit.assign(size,false); T flow = dfs(s,t,INF); if(flow == 0) return ret; ret += flow; } } }; class BipartiteMatching{ public: int x, y; FordFulkerson<int,INT_MAX> mflow; int s, t; BipartiteMatching(int x, int y): x(x), y(y), mflow(x+y+2), s(x+y), t(s+1){ REP(i,x) mflow.add_edge(s,i,1); REP(i,y) mflow.add_edge(x+i,t,1); } void add_edge(int i, int j){ mflow.add_edge(i,x+j,1); } int matching(){ return mflow.max_flow(s,t); } }; const int dir4[4][2] = {{1,0},{-1,0},{0,1},{0,-1}}; int main(){ cin.tie(0); ios::sync_with_stdio(false); int N,M; while(cin >> N >> M){ vector<string> S(N); cin >> S; int c = 0; REP(i,N) REP(j,M) if(S[i][j] != '.') ++c; vector<vector<int>> w(N, vector<int>(M,-1)), b(N, vector<int>(M,-1)); int cw=0, cb=0; REP(i,N) REP(j,M){ if(S[i][j] == 'w') w[i][j] = cw++; if(S[i][j] == 'b') b[i][j] = cb++; } BipartiteMatching bm(cw,cb); REP(i,N){ REP(j,M){ for(auto &d : dir4){ int y=i+d[0], x=j+d[1]; if(y<0 or y>=N or x<0 or x>=M) continue; if(S[i][j] == 'w' and S[y][x] == 'b') bm.add_edge(w[i][j], b[y][x]); } } } int mat = bm.matching(); int pr = min(cw-mat,cb-mat); int ans = mat*100 + pr*10 + (cw-mat-pr) + (cb-mat-pr); cout << ans << endl; } return 0; }