結果
問題 | No.241 出席番号(1) |
ユーザー |
|
提出日時 | 2019-03-28 05:46:54 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 3,535 bytes |
コンパイル時間 | 2,094 ms |
コンパイル使用メモリ | 184,796 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-12 00:51:53 |
合計ジャッジ時間 | 3,698 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 29 |
ソースコード
#include <bits/stdc++.h>#define FOR(v, a, b) for(int v = (a); v < (b); ++v)#define FORE(v, a, b) for(int v = (a); v <= (b); ++v)#define REP(v, n) FOR(v, 0, n)#define REPE(v, n) FORE(v, 0, n)#define REV(v, a, b) for(int v = (a); v >= (b); --v)#define ALL(x) (x).begin(), (x).end()#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)#define EXIST(c,x) ((c).find(x) != (c).end())#define LLI long long int#define fst first#define snd second#ifdef DEBUG#include <misc/C++/Debug.cpp>#else#define dump(x) ((void)0)#endifusing namespace std;#define gcd __gcdtemplate <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}template <typename T, typename U> T& chmin(T &a, const U &b){return a = (a<=b?a:b);}template <typename T, typename U> T& chmax(T &a, const U &b){return a = (a>=b?a:b);}template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}template <typename T, T INF> class FordFulkerson{public:struct edge{int to, rev;T cap;bool is_rev;};private:int size;vector<vector<edge>> graph;vector<bool> visit;T dfs(int from, int to, T flow){if(from == to) return flow;visit[from] = true;for(auto &e : graph[from]){if(!visit[e.to] and e.cap > 0){T d = dfs(e.to, to, min(flow, e.cap));if(d > 0){e.cap -= d;graph[e.to][e.rev].cap += d;return d;}}}return 0;}public:FordFulkerson(int size): size(size), graph(size), visit(size){}void add_edge(int from, int to, const T &cap){graph[from].push_back((edge){to, (int)graph[to].size(), cap, false});graph[to].push_back((edge){from, (int)graph[from].size()-1, 0, true});}T max_flow(int s, int t){T ret = 0;while(1){visit.assign(size,false);T flow = dfs(s,t,INF);if(flow == 0) return ret;ret += flow;}}const vector<vector<edge>>& get_graph(){return graph;}};class BipartiteMatching{public:int x, y;FordFulkerson<int,INT_MAX> mflow;int s, t;BipartiteMatching(int x, int y): x(x), y(y), mflow(x+y+2), s(x+y), t(s+1){REP(i,x) mflow.add_edge(s,i,1);REP(i,y) mflow.add_edge(x+i,t,1);}void add_edge(int i, int j){mflow.add_edge(i,x+j,1);}int matching(){return mflow.max_flow(s,t);}vector<pair<int,int>> get_matching_pairs(){auto g = mflow.get_graph();vector<pair<int,int>> ret;REP(i,(int)g.size()-2){for(const auto &e : g[i]){if((not e.is_rev) and e.cap==0 and e.to!=t) ret.push_back({i, e.to-x});}}return ret;}};int main(){cin.tie(0);ios::sync_with_stdio(false);int N;while(cin >> N){BipartiteMatching bm(N,N);REP(i,N){int a; cin >> a;REP(j,N) if(j!=a) bm.add_edge(i,j);}int m = bm.matching();if(m == N){auto res = bm.get_matching_pairs();vector<int> ans(N);for(auto &p : res) ans[p.fst] = p.snd;join(cout, ALL(ans), "\n");}else{cout << -1 << endl;}}return 0;}