結果

問題 No.241 出席番号(1)
ユーザー Haar
提出日時 2019-03-28 05:46:54
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 3,535 bytes
コンパイル時間 2,094 ms
コンパイル使用メモリ 184,796 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-12 00:51:53
合計ジャッジ時間 3,698 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 29
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define FOR(v, a, b) for(int v = (a); v < (b); ++v)
#define FORE(v, a, b) for(int v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(int v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define LLI long long int
#define fst first
#define snd second
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(x) ((void)0)
#endif
using namespace std;
#define gcd __gcd
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}
template <typename T, typename U> T& chmin(T &a, const U &b){return a = (a<=b?a:b);}
template <typename T, typename U> T& chmax(T &a, const U &b){return a = (a>=b?a:b);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
template <typename T, T INF> class FordFulkerson{
public:
struct edge{
int to, rev;
T cap;
bool is_rev;
};
private:
int size;
vector<vector<edge>> graph;
vector<bool> visit;
T dfs(int from, int to, T flow){
if(from == to) return flow;
visit[from] = true;
for(auto &e : graph[from]){
if(!visit[e.to] and e.cap > 0){
T d = dfs(e.to, to, min(flow, e.cap));
if(d > 0){
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
FordFulkerson(int size): size(size), graph(size), visit(size){}
void add_edge(int from, int to, const T &cap){
graph[from].push_back((edge){to, (int)graph[to].size(), cap, false});
graph[to].push_back((edge){from, (int)graph[from].size()-1, 0, true});
}
T max_flow(int s, int t){
T ret = 0;
while(1){
visit.assign(size,false);
T flow = dfs(s,t,INF);
if(flow == 0) return ret;
ret += flow;
}
}
const vector<vector<edge>>& get_graph(){
return graph;
}
};
class BipartiteMatching{
public:
int x, y;
FordFulkerson<int,INT_MAX> mflow;
int s, t;
BipartiteMatching(int x, int y): x(x), y(y), mflow(x+y+2), s(x+y), t(s+1){
REP(i,x) mflow.add_edge(s,i,1);
REP(i,y) mflow.add_edge(x+i,t,1);
}
void add_edge(int i, int j){
mflow.add_edge(i,x+j,1);
}
int matching(){
return mflow.max_flow(s,t);
}
vector<pair<int,int>> get_matching_pairs(){
auto g = mflow.get_graph();
vector<pair<int,int>> ret;
REP(i,(int)g.size()-2){
for(const auto &e : g[i]){
if((not e.is_rev) and e.cap==0 and e.to!=t) ret.push_back({i, e.to-x});
}
}
return ret;
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int N;
while(cin >> N){
BipartiteMatching bm(N,N);
REP(i,N){
int a; cin >> a;
REP(j,N) if(j!=a) bm.add_edge(i,j);
}
int m = bm.matching();
if(m == N){
auto res = bm.get_matching_pairs();
vector<int> ans(N);
for(auto &p : res) ans[p.fst] = p.snd;
join(cout, ALL(ans), "\n");
}else{
cout << -1 << endl;
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0