結果
| 問題 |
No.119 旅行のツアーの問題
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2015-06-18 21:55:45 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 5,000 ms |
| コード長 | 2,689 bytes |
| コンパイル時間 | 2,354 ms |
| コンパイル使用メモリ | 100,832 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-21 10:53:06 |
| 合計ジャッジ時間 | 2,000 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 19 |
コンパイルメッセージ
main.cpp: In member function ‘void Dinic::add_edge(int, int, int)’:
main.cpp:82:58: warning: narrowing conversion of ‘(&((Dinic*)this)->Dinic::graph.std::vector<std::vector<Dinic::edge> >::operator[](((std::vector<std::vector<Dinic::edge> >::size_type)to)))->std::vector<Dinic::edge>::size()’ from ‘std::vector<Dinic::edge>::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing]
82 | graph[from].push_back((edge) {to, cap, graph[to].size()});
| ~~~~~~~~~~~~~~^~
main.cpp:83:61: warning: narrowing conversion of ‘((&((Dinic*)this)->Dinic::graph.std::vector<std::vector<Dinic::edge> >::operator[](((std::vector<std::vector<Dinic::edge> >::size_type)from)))->std::vector<Dinic::edge>::size() - 1)’ from ‘std::vector<Dinic::edge>::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing]
83 | graph[to].push_back((edge) {from, 0, graph[from].size() - 1});
| ~~~~~~~~~~~~~~~~~~~^~~
ソースコード
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++)
using namespace std;
typedef long long int ll;
typedef vector<int> VI;
typedef pair<int, int> PI;
const double EPS=1e-9;
class Dinic {
private:
struct edge {
int to, cap, rev; // rev is the position of reverse edge in graph[to]
};
std::vector<std::vector<edge> > graph;
std::vector<int> level;
std::vector<int> iter;
/* Perform bfs and calculate distance from s */
void bfs(int s) {
level.assign(level.size(), -1);
std::queue<int> que;
level[s] = 0;
que.push(s);
while (! que.empty()) {
int v = que.front(); que.pop();
for (int i = 0; i < graph[v].size(); ++i) {
edge &e = graph[v][i];
if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
/* search augment path by dfs.
if f == -1, f is treated as infinity. */
int dfs(int v, int t, int f) {
if (v == t) {
return f;
}
for (int &i = iter[v]; i < graph[v].size(); ++i) {
edge &e = graph[v][i];
if (e.cap > 0 && level[v] < level[e.to]) {
int newf = f == -1 ? e.cap : std::min(f, e.cap);
int d = dfs(e.to, t, newf);
if (d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
/* v is the number of vertices (labeled from 0 .. v-1) */
Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {}
void add_edge(int from, int to, int cap) {
graph[from].push_back((edge) {to, cap, graph[to].size()});
graph[to].push_back((edge) {from, 0, graph[from].size() - 1});
}
int max_flow(int s, int t) {
int flow = 0;
while (1) {
bfs(s);
if (level[t] < 0) {
return flow;
}
iter.assign(iter.size(), 0);
int f;
while ((f = dfs(s, t, -1)) > 0) {
flow += f;
}
}
}
};
int main(void){
int n;
cin >> n;
const int inf = 0x100000;
Dinic din(2 * n + 2);
int sum = 0;
REP(i, 0, n) {
int b, c;
cin >> b >> c;
din.add_edge(0, 2 + i, c);
din.add_edge(2 + n + i, 1, b);
din.add_edge(2 + i, 2 + n + i, inf);
sum += b + c;
}
int m;
cin >> m;
REP(i, 0, m) {
int d, e;
cin >> d >> e;
din.add_edge(2 + e, 2 + n + d, inf);
}
cout << sum - din.max_flow(0, 1) << endl;
}