結果
| 問題 |
No.229 線分上を往復する3つの動点の一致
|
| コンテスト | |
| ユーザー |
Kmcode1
|
| 提出日時 | 2015-06-19 23:28:44 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,287 bytes |
| コンパイル時間 | 1,148 ms |
| コンパイル使用メモリ | 121,108 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-07 04:19:38 |
| 合計ジャッジ時間 | 2,176 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 16 WA * 27 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:340:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
340 | scanf("%d", &a);
| ~~~~~^~~~~~~~~~
ソースコード
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cctype>
#include<cstdlib>
#include<algorithm>
#include<bitset>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<cmath>
#include<sstream>
#include<fstream>
#include<iomanip>
#include<ctime>
#include<complex>
#include<functional>
#include<climits>
#include<cassert>
#include<iterator>
#include<unordered_map>
using namespace std;
#define MOD 1000000007
namespace math{
long long int gcd(long long int a, long long int b){
if (a > b){
swap(a, b);
}
while (a){
swap(a, b);
a %= b;
}
return b;
}
long long int lcm(long long int a, long long int b){
long long int g =gcd(a, b);
a /= g;
return a*b;
}
long long int ppow(long long int i, long long int j){
long long int res = 1LL;
while (j){
if (j & 1LL){
res *= i;
res %= MOD;
}
i *= i;
i %= MOD;
j >>= 1LL;
}
return res;
}
long long int extgcd(long long int a, long long int b, long long int &x, long long int &y){
long long int d = a;
if (b != 0){
d = extgcd(b, a%b, y, x);
y -= (a / b)*x;
}
else{
x = 1;
y = 0;
}
return d;
}
long long int modinverse(long long int a, long long int b){ //aの逆元を求める(mod b)
long long int x, y;
long long int d = extgcd(a, b, x, y);
return (x%b + b) % b;
}
namespace matrix{
vector<vector<long long int> > mul(vector<vector<long long int> > &a, vector<vector<long long int> > &b){
vector<vector<long long int> > c(a.size(), vector<long long int>(b[0].size()));
for (int i = 0; i < a.size(); i++){
for (int j = 0; j < b.size(); j++){
for (int k = 0; k < b[0].size(); k++){
c[i][k] = (c[i][k] + a[i][j] * b[j][k]);
c[i][k] %= MOD;
}
}
}
return c;
}
vector<vector<long long int> > ppow(vector<vector<long long int> > a, long long int n){
vector<vector<long long int> > b = a;
if (n == 1LL){
return b;
}
n--;
while (n){
if ((n & 1LL)){
b = mul(b, a);
}
a = mul(a, a);
n >>= 1LL;
}
return b;
}
}
namespace fibonacci{
/*
index :1,2,3,4,5,6,
number:1,1,2,3,5,8,
*/
vector<vector<long long int> > mat;
long long int get_fibonacci(long long int a){ //indexed from 1
if (a == 0LL){
return 1LL;
}
if (a == 1LL){
return 1LL;
}
if (a == 2LL){
return 1LL;
}
math::fibonacci::mat.clear();
math::fibonacci::mat.assign(2, vector<long long int>(2, 0));
math::fibonacci::mat[1][0] = 1LL;
math::fibonacci::mat[0][1] = 1LL;
math::fibonacci::mat[1][1] = 1LL;
math::fibonacci::mat = math::matrix::ppow(mat, a - 2LL);
long long int r = math::fibonacci::mat[0][1];
r += mat[1][1];
r %= MOD;
return r;
}
}
namespace factorial{
vector<long long int> lo;
vector<double> l2;
void set_long(long long int b){
if (lo.size()){
}
else{
lo.push_back(1);
}
for (long long int i = lo.size(); i <= b; i++){
lo.push_back(lo.back());
lo.back() *= i;
if (lo.back() >= MOD){
lo.back() %= MOD;
}
}
}
void set_log(long long int b){
if (l2.size()){
}
else{
l2.push_back(log(0.0));
}
for (long long int i = l2.size(); i <= b; i++){
l2.push_back(l2.back());
l2.back() += log((double)(i));
}
}
long long int get_long(int b){
if (lo.size() <= b){
set_long(b);
}
return lo[b];
}
double get_log(int b){
if (l2.size() <= b){
set_log(b);
}
return l2[b];
}
}
namespace combination{
long long int simpleC(long long int a, long long int b){
if (a < b){
return 0;
}
if (a - b < b){
b = a - b;
}
long long int u = 1LL;
for (long long int j = a; j >= a - b + 1LL; j--){
u *= j;
if (u >= MOD){
u %= MOD;
}
}
long long int s = 1LL;
for (long long int i = 1LL; i <= b; i++){
s *= i;
if (s >= MOD){
s %= MOD;
}
}
return (u*ppow(s, MOD - 2)) % MOD;
}
long long int C(long long int a, long long int b){
if (a < b){
return 0;
}
long long int u = math::factorial::get_long(a);
long long int s = math::factorial::get_long(b)*math::factorial::get_long(a - b);
u %= MOD;
s %= MOD;
return (u*ppow(s, MOD - 2)) % MOD;
}
double logC(int a, int b){
double u = math::factorial::get_log(a);
double s = math::factorial::get_log(b) + math::factorial::get_log(a - b);
return u - s;
}
long long int H(long long int a, long long int b){
return math::combination::C(a + b - 1LL, b);
}
long long int simpleH(long long int a, long long int b){
return math::combination::simpleC(a + b - 1LL, b);
}
}
namespace prime{
vector<long long int> prime;
vector<long long int> use; //smallest divisor
void init(int b){
use.assign(b + 1, 0);
prime.clear();
prime.push_back(2);
use[2] = 2;
for (int i = 3; i < use.size(); i += 2){
if (use[i] == 0LL){
prime.push_back(i);
use[i] = i;
for (int j = i * 2; j < use.size(); j += i){
use[j] = i;
}
}
}
}
vector<int> factorizetion(long long int num){
vector<int> r;
r.clear();
for (int i = 0; i<prime.size() && prime[i] * prime[i] <= num; i++){
while (num%prime[i] == 0LL){
r.push_back(prime[i]);
num /= prime[i];
}
}
if (num > 1LL){
r.push_back(num);
}
return r;
}
int size_of_factorization(long long int num){
int cnt = 0;
for (int i = 0; i<prime.size() && prime[i] * prime[i] <= num; i++){
while (num%prime[i] == 0LL){
cnt++;
num /= prime[i];
}
}
if (num > 1LL){
cnt++;
}
return cnt;
}
long long int number_of_div(long long int num){
long long int way = 1LL;
long long int cnt = 0;
for (int i = 0; i < prime.size() && prime[i] * prime[i] <= num; i++){
cnt = 0;
while (num%prime[i] == 0){
cnt++;
num /= prime[i];
}
way *= (cnt + 1LL);
}
if (num > 1LL){
way *= 2LL;
}
return way;
}
bool isprime(int b){
return binary_search(prime.begin(), prime.end(), b);
}
bool bruteprime(long long int b){
for (long long int i = 2; i*i <= b; i++){
if (b%i == 0LL){
return true;
}
}
return false;
}
}
}
using namespace math;
struct st{
long long int u;
long long int s;
st(long long int u_ = 0,long long int s_=0){
u = u_;
s = s_;
}
};
void y(st &a){
long long int g = gcd(a.s, a.u);
a.s /= g;
a.u /= g;
}
st mul(st a, st b){
st s;
s.s = a.s*b.s;
s.u = a.u*b.u;
y(s);
return s;
}
st div(st a, st b){
swap(b.s, b.u);
return mul(a, b);
}
st pluss(st a, st b){
long long int k = lcm(a.s, b.s);
a.u *= k / a.s;
b.u *= k / b.s;
a.s = b.s = k;
a.u += b.u;
y(a);
return a;
}
vector<int> v;
vector<st> vv;
st A(st a,st b){
st k2 = st(1, 1);
st p = pluss(a, b);
p = div(st(1, 1), p);
y(p);
return p;
}
int main(){
for (int i = 0; i < 3; i++){
int a;
scanf("%d", &a);
v.push_back(a);
}
sort(v.begin(), v.end());
for (int i = 0; i < v.size(); i++){
vv.push_back(st(1,v[i]));
}
st k = A(vv[0], vv[1]);
st kk = A(vv[1], vv[2]);
long long int LCM = lcm(k.s, kk.s);
k.u *= LCM / k.s;
kk.u *= LCM / kk.s;
k.s = kk.s = LCM;
LCM = lcm(k.u, kk.u);
k.u = LCM;
y(k);
printf("%lld/%lld\n", k.u, k.s);
return 0;
}
Kmcode1