結果
問題 | No.229 線分上を往復する3つの動点の一致 |
ユーザー | data9824 |
提出日時 | 2015-06-19 23:39:06 |
言語 | C++11 (gcc 11.4.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 946 bytes |
コンパイル時間 | 350 ms |
コンパイル使用メモリ | 57,600 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-07 04:26:11 |
合計ジャッジ時間 | 176,563 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 905 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | AC | 2,720 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | TLE | - |
testcase_12 | AC | 2,794 ms
6,944 KB |
testcase_13 | AC | 32 ms
6,940 KB |
testcase_14 | TLE | - |
testcase_15 | AC | 13 ms
6,940 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | AC | 332 ms
6,944 KB |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | TLE | - |
testcase_37 | TLE | - |
testcase_38 | TLE | - |
testcase_39 | TLE | - |
testcase_40 | TLE | - |
testcase_41 | TLE | - |
testcase_42 | AC | 75 ms
6,944 KB |
testcase_43 | AC | 394 ms
6,940 KB |
testcase_44 | TLE | - |
testcase_45 | AC | 2,882 ms
6,944 KB |
ソースコード
#include <iostream> #include <algorithm> using namespace std; long long gcd(long long x, long long y) { do { if (x < y) { swap(x, y); } x = x % y; } while (x > 0LL); return y; } long long lcm(long long x, long long y) { return x * y / gcd(x, y); } int main() { long long t[3]; cin >> t[0] >> t[1] >> t[2]; long long multiple = lcm(t[0], lcm(t[1], t[2])); long long denominator; long long positions[3]; for (denominator = min(multiple, 10000LL * 10000LL); denominator >= 0; --denominator) { for (int i = 0; i < 3; ++i) { positions[i] = 2 * multiple / t[i] % (2 * denominator); if (positions[i] > denominator) { positions[i] = 2 * denominator - positions[i]; } } if (positions[0] == positions[1] && positions[1] == positions[2]) { break; } } long long divisor = gcd(multiple, denominator); multiple /= divisor; denominator /= divisor; cout << multiple << "/" << denominator << endl; return 0; }