結果
問題 | No.229 線分上を往復する3つの動点の一致 |
ユーザー | anta |
提出日時 | 2015-06-19 23:52:21 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 5,000 ms |
コード長 | 3,731 bytes |
コンパイル時間 | 523 ms |
コンパイル使用メモリ | 84,640 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-07 04:29:24 |
合計ジャッジ時間 | 1,596 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,940 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,944 KB |
testcase_13 | AC | 1 ms
6,944 KB |
testcase_14 | AC | 1 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,940 KB |
testcase_16 | AC | 1 ms
6,944 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,944 KB |
testcase_22 | AC | 1 ms
6,944 KB |
testcase_23 | AC | 1 ms
6,940 KB |
testcase_24 | AC | 1 ms
6,944 KB |
testcase_25 | AC | 1 ms
6,940 KB |
testcase_26 | AC | 1 ms
6,944 KB |
testcase_27 | AC | 1 ms
6,940 KB |
testcase_28 | AC | 1 ms
6,940 KB |
testcase_29 | AC | 1 ms
6,944 KB |
testcase_30 | AC | 1 ms
6,940 KB |
testcase_31 | AC | 1 ms
6,940 KB |
testcase_32 | AC | 1 ms
6,940 KB |
testcase_33 | AC | 1 ms
6,940 KB |
testcase_34 | AC | 1 ms
6,940 KB |
testcase_35 | AC | 1 ms
6,940 KB |
testcase_36 | AC | 1 ms
6,940 KB |
testcase_37 | AC | 1 ms
6,940 KB |
testcase_38 | AC | 1 ms
6,940 KB |
testcase_39 | AC | 1 ms
6,944 KB |
testcase_40 | AC | 2 ms
6,944 KB |
testcase_41 | AC | 1 ms
6,944 KB |
testcase_42 | AC | 1 ms
6,944 KB |
testcase_43 | AC | 1 ms
6,940 KB |
testcase_44 | AC | 1 ms
6,940 KB |
testcase_45 | AC | 1 ms
6,940 KB |
ソースコード
#include <string> #include <vector> #include <algorithm> #include <numeric> #include <set> #include <map> #include <queue> #include <iostream> #include <sstream> #include <cstdio> #include <cmath> #include <ctime> #include <cstring> #include <cctype> #include <cassert> #include <limits> #include <functional> #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) #if defined(_MSC_VER) || __cplusplus > 199711L #define aut(r,v) auto r = (v) #else #define aut(r,v) __typeof(v) r = (v) #endif #define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it) #define all(o) (o).begin(), (o).end() #define pb(x) push_back(x) #define mp(x,y) make_pair((x),(y)) #define mset(m,v) memset(m,v,sizeof(m)) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3fLL using namespace std; typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll; template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; } template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } template<typename T>T gcd(T x, T y) { return y == 0 ? x : gcd(y,x%y); } template<typename T>T lcm(T x, T y){ return x == 0 ? 0 : x/gcd(x,y)*y; } struct Ratio { typedef ll T; T x, y; Ratio(): x(0), y(1) { } Ratio(T x_): x(x_), y(1) { } Ratio(T x_, T y_): x(x_), y(y_) { normalize(); } double toDouble() { return double(x) / y; } void normalize() { T g = gcd(abs(x), abs(y)); if(g == 0) return; x /= g; y /= g; if(y < 0) x = -x, y = -y; if(x == 0) y = 1; } bool operator==(const Ratio& q) const { return x == q.x && y == q.y; } bool operator!=(const Ratio& q) const { return x != q.x || y != q.y; } bool operator<(const Ratio& q) const { return x*q.y < y*q.x; } bool operator<=(const Ratio& q) const { return x*q.y <= y*q.x; } bool operator>(const Ratio& q) const { return x*q.y > y*q.x; } bool operator>=(const Ratio& q) const { return x*q.y >= y*q.x; } Ratio& operator+=(const Ratio& q) { T g = gcd(y,q.y); x = q.y/g*x + y/g*q.x, y = y/g*q.y; normalize(); return *this; } Ratio& operator-=(const Ratio& q) { T g = gcd(y,q.y); x = q.y/g*x - y/g*q.x, y = y/g*q.y; normalize(); return *this; } Ratio& operator*=(const Ratio& q) { x = x*q.x, y = y*q.y; normalize(); return *this; } Ratio& operator/=(const Ratio& q) { x = x*q.y, y = y*q.x; normalize(); return *this; } Ratio operator+(const Ratio& q) const { return Ratio(*this) += q; } Ratio operator-(const Ratio& q) const { return Ratio(*this) -= q; } Ratio operator*(const Ratio& q) const { return Ratio(*this) *= q; } Ratio operator/(const Ratio& q) const { return Ratio(*this) /= q; } Ratio operator-() const { return Ratio(-x, y); } }; ostream& operator<<(ostream &o, const Ratio& p) { o << p.x << "/" << p.y; return o; } Ratio lcm(Ratio a, Ratio b) { return Ratio(lcm(a.x, b.x), gcd(a.y, b.y)); } int main() { ll T1, T2, T3; while(cin >> T1 >> T2 >> T3) { //((a / T1 - b / T2) x mod 1 = 0 Ratio ans(INFL, 1); ll T = T1 * T2 * T3; rer(a, -1, 1) if(a != 0) rer(b, -1, 1) if(b != 0) rer(c, -1, 1) if(c != 0) { ll X = lcm(abs(a * T2 - b * T1), abs(b * T3 - c * T1)); Ratio t(T1 * T2, abs(a * T2 - b * T1)); Ratio u(T1 * T3, abs(b * T3 - c * T1)); amin(ans, lcm(t, u)); /* for(ll x = 1; ; ++ x) { bool ok1 = (a * T2 - b * T1) * x % (T1 * T2 * 12) == 0; bool ok2 = (b * T3 - c * T1) * x % (T1 * T3 * 12) == 0; if(ok1 && ok2) { cerr << a << ", " << b << ", " << c << ": " << x << "; " << t << ", " << u << endl; amin(ans, x); break; } }*/ } cout << ans << endl; } return 0; }