結果
| 問題 | No.229 線分上を往復する3つの動点の一致 | 
| コンテスト | |
| ユーザー |  btk | 
| 提出日時 | 2015-06-20 01:27:49 | 
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 2 ms / 5,000 ms | 
| コード長 | 2,589 bytes | 
| コンパイル時間 | 1,017 ms | 
| コンパイル使用メモリ | 90,004 KB | 
| 実行使用メモリ | 5,376 KB | 
| 最終ジャッジ日時 | 2024-07-07 04:34:14 | 
| 合計ジャッジ時間 | 1,625 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 43 | 
ソースコード
#include<iostream>
#include<fstream>
#include<sstream>
#include<string>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<list>
#include<algorithm>
#include<utility>
#include<complex>
#include<functional>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> P;
LL L;
LL gcd(LL a, LL b){
	return (b == 0) ? a : gcd(b, a%b);
}
typedef long double LD;
bool comp(P a, P b){
	return a.first/(LD)a.second < b.first/(LD)b.second;
}
P solve(LL x,LL y){
	LL u = (y/gcd(x, y))*(L/gcd(L,y));
	y /= gcd(L, y);
	return make_pair(u / gcd(u, y), y / gcd(u, y));
}
int main(void){
	LL a, b, c;
	cin >> a >> b >> c;
	L = (a*b*c)/gcd(gcd(a,c),b);
	P res = make_pair(L, 1ll);
	a = L / a;
	b = L / b;
	c = L / c;
	{auto tmp = solve(a + b, a + c); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(a + c, a + b); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(c + b, a + c); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(a + b, b + c); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(a + c, c + b); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(c + b, a + b); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - b), a + c); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - c), a + b); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(c - b), a + c); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - b), b + c); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - c), c + b); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(c - b), a + b); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve( a + c, abs(a - b)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(a + b, abs(a - c)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve( a + c, abs(c - b)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve( b + c, abs(a - b)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve( c + b, abs(a - c)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve( a + b, abs(c - b)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - b), abs(a - c)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - c), abs(a - b)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(c - b), abs(a - c)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - b), abs(b - c)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(a - c), abs(c - b)); if (comp(tmp, res))res = tmp; }
	{auto tmp = solve(abs(c - b), abs(a - b)); if (comp(tmp, res))res = tmp; }
	cout << res.first << "/" << res.second << endl;
	return(0);
}
            
            
            
        