結果
問題 | No.3046 yukicoderの過去問 |
ユーザー | risujiroh |
提出日時 | 2019-04-02 09:59:01 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,939 bytes |
コンパイル時間 | 1,931 ms |
コンパイル使用メモリ | 184,220 KB |
実行使用メモリ | 36,788 KB |
最終ジャッジ日時 | 2024-05-06 13:57:50 |
合計ジャッジ時間 | 8,214 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 106 ms
18,932 KB |
testcase_01 | AC | 132 ms
18,932 KB |
testcase_02 | AC | 141 ms
18,936 KB |
testcase_03 | AC | 575 ms
34,280 KB |
testcase_04 | AC | 178 ms
18,932 KB |
testcase_05 | AC | 1,102 ms
36,524 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; template<class T = int> using V = vector<T>; template<class T = int> using VV = V< V<T> >; template<unsigned P> struct ModInt { using M = ModInt; unsigned v; ModInt() : v(0) {} template<class Z> ModInt(Z x) : v(x >= 0 ? x % P : (P - -x % P) % P) {} constexpr ModInt(unsigned v, int) : v(v) {} static constexpr unsigned p() { return P; } M operator+() const { return *this; } M operator-() const { return {v ? P - v : 0, 0}; } explicit operator bool() const noexcept { return v; } bool operator!() const noexcept { return !(bool) *this; } M operator*(M r) const { return M(*this) *= r; } M operator/(M r) const { return M(*this) /= r; } M operator+(M r) const { return M(*this) += r; } M operator-(M r) const { return M(*this) -= r; } bool operator==(M r) const { return v == r.v; } bool operator!=(M r) const { return !(*this == r); } M& operator*=(M r) { v = (uint64_t) v * r.v % P; return *this; } M& operator/=(M r) { return *this *= r.inv(); } M& operator+=(M r) { if ((v += r.v) >= P) v -= P; return *this; } M& operator-=(M r) { if ((v += P - r.v) >= P) v -= P; return *this; } M inv() const { int a = v, b = P, x = 1, u = 0; while (b) { int q = a / b; swap(a -= q * b, b); swap(x -= q * u, u); } assert(a == 1); return x; } template<class Z> M pow(Z n) const { if (n < 0) return pow(-n).inv(); M res = 1; for (M a = *this; n; a *= a, n >>= 1) if (n & 1) res *= a; return res; } template<class Z> friend M operator*(Z l, M r) { return M(l) *= r; } template<class Z> friend M operator/(Z l, M r) { return M(l) /= r; } template<class Z> friend M operator+(Z l, M r) { return M(l) += r; } template<class Z> friend M operator-(Z l, M r) { return M(l) -= r; } friend ostream& operator<<(ostream& os, M r) { return os << r.v; } friend istream& operator>>(istream& is, M& r) { lint x; is >> x; r = x; return is; } template<class Z> friend bool operator==(Z l, M r) { return M(l) == r; } template<class Z> friend bool operator!=(Z l, M r) { return !(l == r); } }; using Mint = ModInt<(unsigned) 1e9 + 7>; using R = double; constexpr R pi = acos((R) -1); using C = complex<R>; C& operator*=(C& l, const C& r) { return l = {real(l) * real(r) - imag(l) * imag(r), real(l) * imag(r) + imag(l) * real(r)}; } void fft(V<C>& a, bool inv = false) { int n = a.size(); int j = 0; for (int i = 1; i < n; ++i) { int w = n >> 1; while (j >= w) j -= w, w >>= 1; j += w; if (i < j) swap(a[i], a[j]); } static VV<C> xi(30); for (int k = 0; 1 << k < n; ++k) if (xi[k].empty()) { xi[k].resize(1 << k); for (int i = 0; i < 1 << k; ++i) { xi[k][i] = polar<R>(1, i * pi / (1 << k)); } } for (int k = 0; 1 << k < n; ++k) { const int w = 1 << k; for (int s = 0; s < n; s += 2 * w) { for (int i = s; i < s + w; ++i) { j = i + w; a[j] *= inv ? conj(xi[k][i - s]) : xi[k][i - s]; tie(a[i], a[j]) = make_pair(a[i] + a[j], a[i] - a[j]); } } } } // BEGIN CUT HERE template<int K = 15> void multiply(V<Mint>& a, const V<Mint>& b) { assert(!a.empty() and !b.empty()); int n = 1 << __lg(2 * (a.size() + b.size() - 1) - 1); V<C> f(n), g(n); for (int i = 0; i < n; ++i) { if (i < (int) a.size()) f[i].real(a[i].v & ~(~0 << K)), f[i].imag(a[i].v >> K); if (i < (int) b.size()) g[i].real(b[i].v & ~(~0 << K)), g[i].imag(b[i].v >> K); } fft(f), fft(g); V<C> Al(n), Au(n), Bl(n), Bu(n); for (int i = 0; i < n; ++i) { Al[i] = (f[i] + conj(f[-i & n - 1])) / C(2, 0); Au[i] = (f[i] - conj(f[-i & n - 1])) / C(0, 2); Bl[i] = (g[i] + conj(g[-i & n - 1])) / C(2, 0); Bu[i] = (g[i] - conj(g[-i & n - 1])) / C(0, 2); } for (int i = 0; i < n; ++i) { f[i] = Al[i] * Bl[i] + C(0, 1) * Al[i] * Bu[i]; g[i] = Au[i] * Bl[i] + C(0, 1) * Au[i] * Bu[i]; } fft(f, true), fft(g, true); a.resize(a.size() + b.size() - 1); for (int i = 0; i < (int) a.size(); ++i) { lint l = real(f[i]) / n + 0.5; lint m = (imag(f[i]) + real(g[i])) / n + 0.5; lint u = imag(g[i]) / n + 0.5; a[i] = l + (m << K) + (u << 2 * K); } } // END CUT HERE template<class T> struct Polynomial { using P = Polynomial; V<T> c; Polynomial(int n = 0) : c(n) {} void shrink() { while (!c.empty() and !c.back()) c.pop_back(); } int size() const { return c.size(); } T& operator[](int i) { return c[i]; } const T& operator[](int i) const { return c[i]; } P operator*(const P& r) const { return P(*this) *= r; } P operator*(const T& r) const { return P(*this) *= r; } P operator/(const P& r) const { return P(*this) /= r; } P operator+(const P& r) const { return P(*this) += r; } P operator-(const P& r) const { return P(*this) -= r; } P& operator*=(const T& r) { for (int i = 0; i < size(); ++i) c[i] *= r; shrink(); return *this; } P& operator*=(const P& r) { multiply(c, r.c), shrink(); return *this; } P& operator/=(const P& r) { return *this *= r.inverse(); } P& operator+=(const P& r) { if (r.size() > size()) c.resize(r.size()); for (int i = 0; i < r.size(); ++i) c[i] += r[i]; shrink(); return *this; } P& operator-=(const P& r) { if (r.size() > size()) c.resize(r.size()); for (int i = 0; i < r.size(); ++i) c[i] -= r[i]; shrink(); return *this; } P inverse(int n) const { assert(!c.empty() and c[0]); if (n == 1) { P res(1); res[0] = 1 / c[0]; return res; } P inv = inverse(n + 1 >> 1); P res = inv * (T) 2 - *this * inv * inv; res.c.resize(n); return res; } }; using P = Polynomial<Mint>; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int k, n; cin >> k >> n; P f(1e5 + 1); f[0] = 1; for (int i = 0; i < n; ++i) { int x; cin >> x; f[x] = -1; } cout << f.inverse(k + 1)[k] << '\n'; }