結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | バイト |
提出日時 | 2019-04-05 00:58:12 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 390 ms / 9,973 ms |
コード長 | 20,546 bytes |
コンパイル時間 | 3,130 ms |
コンパイル使用メモリ | 192,616 KB |
実行使用メモリ | 43,028 KB |
最終ジャッジ日時 | 2024-11-16 23:13:20 |
合計ジャッジ時間 | 5,120 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 121 ms
43,028 KB |
testcase_01 | AC | 125 ms
42,900 KB |
testcase_02 | AC | 129 ms
43,028 KB |
testcase_03 | AC | 129 ms
43,028 KB |
testcase_04 | AC | 290 ms
42,900 KB |
testcase_05 | AC | 280 ms
42,908 KB |
testcase_06 | AC | 197 ms
42,904 KB |
testcase_07 | AC | 203 ms
42,904 KB |
testcase_08 | AC | 194 ms
42,904 KB |
testcase_09 | AC | 390 ms
42,904 KB |
ソースコード
//#pragma GCC optimize ("-O3") #include <bits/stdc++.h> using namespace std; //@起動時 struct initon { initon() { cin.tie(0); ios::sync_with_stdio(false); cout.setf(ios::fixed); cout.precision(16); srand((unsigned) clock() + (unsigned) time(NULL)); }; } __initon; //衝突対策 #define ws ___ws struct T { int f, s, t; T() { f = -1, s = -1, t = -1; } T(int f, int s, int t) : f(f), s(s), t(t) {} bool operator<(const T &r) const { return f != r.f ? f < r.f : s != r.s ? s < r.s : t < r.t; //return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t; 大きい順 } bool operator>(const T &r) const { return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t; //return f != r.f ? f > r.f : s != r.s ? s > r.s : t > r.t; 小さい順 } bool operator==(const T &r) const { return f == r.f && s == r.s && t == r.t; } bool operator!=(const T &r) const { return f != r.f || s != r.s || t != r.t; } int operator[](int i) { assert(i < 3); return i == 0 ? f : i == 1 ? s : t; } }; #define int long long #define ll long long #define double long double #define ull unsigned long long using dou = double; using itn = int; using str = string; using bo= bool; #define au auto using P = pair<ll, ll>; #define fi first #define se second #define vec vector #define beg begin #define rbeg rbegin #define con continue #define bre break #define brk break #define is == //マクロ省略系 コンテナ using vi = vector<int>; #define _overloadvvi(_1, _2, _3, _4, name, ...) name #define vvi0() vec<vi> #define vvi1(a) vec<vi> a #define vvi2(a, b) vec<vi> a(b) #define vvi3(a, b, c) vec<vi> a(b,vi(c)) #define vvi4(a, b, c, d) vec<vi> a(b,vi(c,d)) #define vvi(...) _overloadvvi(__VA_ARGS__,vvi4,vvi3,vvi2 ,vvi1,vvi0)(__VA_ARGS__) #define MALLOC(type, len) (type*)malloc((len) * sizeof(type)) using vl = vector<ll>; #define _overloadvvl(_1, _2, _3, _4, name, ...) name #define vvl1(a) vec<vl> a #define vvl2(a, b) vec<vl> a(b) #define vvl3(a, b, c) vec<vl> a(b,vl(c)) #define vvl4(a, b, c, d) vec<vl> a(b,vl(c,d)) #define vvl(...) _overloadvvl(__VA_ARGS__,vvl4,vvl3,vvl2 ,vvl1)(__VA_ARGS__) using vb = vector<bool>; #define _overloadvvb(_1, _2, _3, _4, name, ...) name #define vvb1(a) vec<vb> a #define vvb2(a, b) vec<vb> a(b) #define vvb3(a, b, c) vec<vb> a(b,vb(c)) #define vvb4(a, b, c, d) vec<vb> a(b,vb(c,d)) #define vvb(...) _overloadvvb(__VA_ARGS__,vvb4,vvb3,vvb2 ,vvb1)(__VA_ARGS__) using vs = vector<string>; #define _overloadvvs(_1, _2, _3, _4, name, ...) name #define vvs1(a) vec<vs> a #define vvs2(a, b) vec<vs> a(b) #define vvs3(a, b, c) vec<vs> a(b,vs(c)) #define vvs4(a, b, c, d) vec<vs> a(b,vs(c,d)) #define vvs(...) _overloadvvs(__VA_ARGS__,vvs4,vvs3,vvs2 ,vvs1)(__VA_ARGS__) using vd = vector<double>; #define _overloadvvd(_1, _2, _3, _4, name, ...) name #define vvd1(a) vec<vd> a #define vvd2(a, b) vec<vd> a(b) #define vvd3(a, b, c) vec<vd> a(b,vd(c)) #define vvd4(a, b, c, d) vec<vd> a(b,vd(c,d)) #define vvd(...) _overloadvvd(__VA_ARGS__,vvd4,vvd3,vvd2 ,vvd1)(__VA_ARGS__) using vc=vector<char>; #define _overloadvvc(_1, _2, _3, _4, name, ...) name #define vvc1(a) vec<vc> a #define vvc2(a, b) vec<vc> a(b) #define vvc3(a, b, c) vec<vc> a(b,vc(c)) #define vvc4(a, b, c, d) vec<vc> a(b,vc(c,d)) #define vvc(...) _overloadvvc(__VA_ARGS__,vvc4,vvc3,vvc2 ,vvc1)(__VA_ARGS__) using vp = vector<P>; #define _overloadvvp(_1, _2, _3, _4, name, ...) name #define vvp1(a) vec<vp> a #define vvp2(a, b) vec<vp> a(b) #define vvp3(a, b, c) vec<vp> a(b,vp(c)) #define vvp4(a, b, c, d) vec<vp> a(b,vp(c,d)) using vt = vector<T>; #define _overloadvvt(_1, _2, _3, _4, name, ...) name #define vvt1(a) vec<vt> a #define vvt2(a, b) vec<vt> a(b) #define vvt3(a, b, c) vec<vt> a(b,vt(c)) #define vvt4(a, b, c, d) vec<vt> a(b,vt(c,d)) #define v3i(a, b, c, d) vector<vector<vi>> a(b, vector<vi>(c, vi(d))) #define v3d(a, b, c, d) vector<vector<vd>> a(b, vector<vd>(c, vd(d))) #define v3m(a, b, c, d) vector<vector<vm>> a(b, vector<vm>(c, vm(d))) #define _vvi vector<vi> #define _vvl vector<vl> #define _vvb vector<vb> #define _vvs vector<vs> #define _vvd vector<vd> #define _vvc vector<vc> #define _vvp vector<vp> #define PQ priority_queue<ll, vector<ll>, greater<ll> > #define tos to_string using mapi = map<int, int>; using mapd = map<dou, int>; using mapc = map<char, int>; using maps = map<str, int>; using seti = set<int>; using setd = set<dou>; using setc = set<char>; using sets = set<str>; using qui = queue<int>; #define bset bitset #define uset unordered_set #define mset multiset #define umap unordered_map #define umapi unordered_map<int,int> #define umapp unordered_map<P,int> #define mmap multimap //マクロ 繰り返し #define _overloadrep(_1, _2, _3, _4, name, ...) name # define _rep(i, n) for(int i = 0,_lim=n; i < _lim ; i++) #define repi(i, m, n) for(int i = m,_lim=n; i < _lim ; i++) #define repadd(i, m, n, ad) for(int i = m,_lim=n; i < _lim ; i+= ad) #define rep(...) _overloadrep(__VA_ARGS__,repadd,repi,_rep,)(__VA_ARGS__) #define _rer(i, n) for(int i = n; i >= 0 ; i--) #define reri(i, m, n) for(int i = m,_lim=n; i >= _lim ; i--) #define rerdec(i, m, n, dec) for(int i = m,_lim=n; i >= _lim ; i-=dec) #define rer(...) _overloadrep(__VA_ARGS__,rerdec,reri,_rer,)(__VA_ARGS__) #define fora(a, b) for(auto&& a : b) #define forg(gi, ve) for (int gi = 0, f, t, c; gi < ve.size() && (f = ve[gi].f, t = ve[gi].t, c = ve[gi].c, true); gi++) #define fort(gi, ve) for (int gi = 0, f, t, c; gi < ve.size() && (f = ve[gi].f, t = ve[gi].t, c = ve[gi].c, true); gi++)if(t!=p) //#define fort(gi, ve) for (int gi = 0, f, t, c;gi<ve.size()&& (gi+= (ve[gi].t==p))< ve.size() && (f = ve[gi].f,t=ve[gi].t, c = ve[gi].c,true); gi++) //マクロ 定数 #define k3 1010 #define k4 10101 #define k5 101010 #define k6 1010101 #define k7 10101010 const int inf = (int) 1e9 + 100; const ll linf = (ll) 1e18 + 100; const double eps = 1e-9; const double PI = 3.1415926535897932384626433832795029L; ll ma = numeric_limits<ll>::min(); ll mi = numeric_limits<ll>::max(); const int y4[] = {-1, 1, 0, 0}; const int x4[] = {0, 0, -1, 1}; const int y8[] = {0, 1, 0, -1, -1, 1, 1, -1}; const int x8[] = {1, 0, -1, 0, 1, -1, 1, -1}; //マクロ省略形 関数等 #define arsz(a) (sizeof(a)/sizeof(a[0])) #define sz(a) ((int)(a).size()) #define rs resize #define mp make_pair #define pb push_back #define pf push_front #define eb emplace_back #define all(a) (a).begin(),(a).end() #define rall(a) (a).rbegin(),(a).rend() inline void sort(string &a) { sort(a.begin(), a.end()); } template<class T> inline void sort(vector<T> &a) { sort(a.begin(), a.end()); }; template<class T> inline void sort(vector<T> &a, int len) { sort(a.begin(), a.begin() + len); }; template<class T, class F> inline void sort(vector<T> &a, F f) { sort(a.begin(), a.end(), [&](T l, T r) { return f(l) < f(r); }); }; enum ___pcomparator { fisi, fisd, fdsi, fdsd, sifi, sifd, sdfi, sdfd }; inline void sort(vector<P> &a, ___pcomparator type) { switch (type) { case fisi: sort(all(a), [&](P l, P r) { return l.fi != r.fi ? l.fi < r.fi : l.se < r.se; }); break; case fisd: sort(all(a), [&](P l, P r) { return l.fi != r.fi ? l.fi < r.fi : l.se > r.se; }); break; case fdsi: sort(all(a), [&](P l, P r) { return l.fi != r.fi ? l.fi > r.fi : l.se < r.se; }); break; case fdsd: sort(all(a), [&](P l, P r) { return l.fi != r.fi ? l.fi > r.fi : l.se > r.se; }); break; case sifi: sort(all(a), [&](P l, P r) { return l.se != r.se ? l.se < r.se : l.fi < r.fi; }); break; case sifd: sort(all(a), [&](P l, P r) { return l.se != r.se ? l.se < r.se : l.fi > r.fi; }); break; case sdfi: sort(all(a), [&](P l, P r) { return l.se != r.se ? l.se > r.se : l.fi < r.fi; }); break; case sdfd: sort(all(a), [&](P l, P r) { return l.se != r.se ? l.se > r.se : l.fi > r.fi; }); break; } }; inline void sort(vector<T> &a, ___pcomparator type) { switch (type) { case fisi: sort(all(a), [&](T l, T r) { return l.f != r.f ? l.f < r.f : l.s < r.s; }); break; case fisd: sort(all(a), [&](T l, T r) { return l.f != r.f ? l.f < r.f : l.s > r.s; }); break; case fdsi: sort(all(a), [&](T l, T r) { return l.f != r.f ? l.f > r.f : l.s < r.s; }); break; case fdsd: sort(all(a), [&](T l, T r) { return l.f != r.f ? l.f > r.f : l.s > r.s; }); break; case sifi: sort(all(a), [&](T l, T r) { return l.s != r.s ? l.s < r.s : l.f < r.f; }); break; case sifd: sort(all(a), [&](T l, T r) { return l.s != r.s ? l.s < r.s : l.f > r.f; }); break; case sdfi: sort(all(a), [&](T l, T r) { return l.s != r.s ? l.s > r.s : l.f < r.f; }); break; case sdfd: sort(all(a), [&](T l, T r) { return l.s != r.s ? l.s > r.s : l.f > r.f; }); break; } }; template<class T> inline void rsort(vector<T> &a) { sort(a.begin(), a.end(), greater<T>()); }; template<class T> inline void rsort(vector<T> &a, int len) { sort(a.begin(), a.begin() + len, greater<T>()); }; template<class U, class F> inline void rsort(vector<U> &a, F f) { sort(a.begin(), a.end(), [&](U l, U r) { return f(l) > f(r); }); }; template<class U> inline void sortp(vector<U> &a, vector<U> &b) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); sort(c); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second;; } }; //F = T<T> //例えばreturn p.fi + p.se; template<class U, class F> inline void sortp(vector<U> &a, vector<U> &b, F f) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); sort(c, f); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U, class F> inline void sortp(vector<U> &a, vector<U> &b, char type) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); sort(c, type); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U> inline void rsortp(vector<U> &a, vector<U> &b) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); rsort(c); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U, class F> inline void rsortp(vector<U> &a, vector<U> &b, F f) { vp c; int n = sz(a); assert(n == sz(b)); rep(i, n)c.eb(a[i], b[i]); rsort(c, f); rep(i, n) { a[i] = c[i].first; b[i] = c[i].second; } }; template<class U> inline void sortt(vector<U> &a, vector<U> &b, vector<U> &c) { vt r; int n = sz(a); assert(n == sz(b)); assert(n == sz(c)); rep(i, n)r.eb(a[i], b[i], c[i]); sort(r); rep(i, n) { a[i] = r[i].f; b[i] = r[i].s; c[i] = r[i].t; } }; template<class U, class F> inline void sortt(vector<U> &a, vector<U> &b, vector<U> &c, F f) { vt r; int n = sz(a); assert(n == sz(b)); assert(n == sz(c)); rep(i, n)r.eb(a[i], b[i], c[i]); sort(r, f); rep(i, n) { a[i] = r[i].f; b[i] = r[i].s; c[i] = r[i].t; } }; template<class U, class F> inline void rsortt(vector<U> &a, vector<U> &b, vector<U> &c, F f) { vt r; int n = sz(a); assert(n == sz(b)); assert(n == sz(c)); rep(i, n)r.eb(a[i], b[i], c[i]); rsort(r, f); rep(i, n) { a[i] = r[i].f; b[i] = r[i].s; c[i] = r[i].t; } }; template<class T> inline void sort2(vector<vector<T>> &a) { for (int i = 0, n = a.size(); i < n; i++)sort(a[i]); } template<class T> inline void rsort2(vector<vector<T>> &a) { for (int i = 0, n = a.size(); i < n; i++)rsort(a[i]); } template<typename A, size_t N, typename T> void fill(A (&a)[N], const T &v) { rep(i, N)a[i] = v; } template<typename A, size_t N, size_t O, typename T> void fill(A (&a)[N][O], const T &v) { rep(i, N)rep(j, O)a[i][j] = v; } template<typename A, size_t N, size_t O, size_t P, typename T> void fill(A (&a)[N][O][P], const T &v) { rep(i, N)rep(j, O)rep(k, P)a[i][j][k] = v; } template<typename A, size_t N, size_t O, size_t P, size_t Q, typename T> void fill(A (&a)[N][O][P][Q], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep(l, Q)a[i][j][k][l] = v; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, typename T> void fill(A (&a)[N][O][P][Q][R], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep(l, Q)rep(m, R)a[i][j][k][l][m] = v; } template<typename A, size_t N, size_t O, size_t P, size_t Q, size_t R, size_t S, typename T> void fill(A (&a)[N][O][P][Q][R][S], const T &v) { rep(i, N)rep(j, O)rep(k, P)rep(l, Q)rep(m, R)rep(n, S)a[i][j][k][l][m][n] = v; } template<typename V, typename T> void fill(V &xx, const T vall) { xx = vall; } template<typename V, typename T> void fill(vector<V> &vecc, const T vall) { for (auto &&vx: vecc) fill(vx, vall); } //@汎用便利関数 入力 template<typename T = int> T _in() { T x; cin >> x; return (x); } #define _overloadin(_1, _2, _3, _4, name, ...) name #define in0() _in() #define in1(a) cin>>a #define in2(a, b) cin>>a>>b #define in3(a, b, c) cin>>a>>b>>c #define in4(a, b, c, d) cin>>a>>b>>c>>d #define in(...) _overloadin(__VA_ARGS__,in4,in3,in2 ,in1,in0)(__VA_ARGS__) #define _overloaddin(_1, _2, _3, _4, name, ...) name #define din1(a) int a;cin>>a #define din2(a, b) int a,b;cin>>a>>b #define din3(a, b, c) int a,b,c;cin>>a>>b>>c #define din4(a, b, c, d) int a,b,c,d;cin>>a>>b>>c>>d #define din(...) _overloadin(__VA_ARGS__,din4,din3,din2 ,din1)(__VA_ARGS__) #define _overloaddind(_1, _2, _3, _4, name, ...) name #define din1d(a) int a;cin>>a;a-- #define din2d(a, b) int a,b;cin>>a>>b;a--,b-- #define din3d(a, b, c) int a,b,c;cin>>a>>b>>c;a--,b--,c-- #define din4d(a, b, c, d) int a,b,c,d;cin>>a>>b>>c>>d;;a--,b--,c--,d-- #define dind(...) _overloaddind(__VA_ARGS__,din4d,din3d,din2d ,din1d)(__VA_ARGS__) string sin() { return _in<string>(); } ll lin() { return _in<ll>(); } #define na(a, n) a.resize(n); rep(i,n) cin >> a[i]; #define nao(a, n) a.resize(n+1); rep(i,n) cin >> a[i+1]; #define nad(a, n) a.resize(n); rep(i,n){ cin >> a[i]; a[i]--;} #define na2(a, b, n) a.resize(n),b.resize(n);rep(i, n)cin >> a[i] >> b[i]; #define na2d(a, b, n) a.resize(n),b.resize(n);rep(i, n){cin >> a[i] >> b[i];a[i]--,b[i]--;} #define na3(a, b, c, n) a.resize(n),b.resize(n),c.resize(n); rep(i, n)cin >> a[i] >> b[i] >> c[i]; #define na3d(a, b, c, n) a.resize(n),b.resize(n),c.resize(n); rep(i, n){cin >> a[i] >> b[i] >> c[i];a[i]--,b[i]--,c[i]--;} #define nt(a, h, w) resize(a,h,w);rep(hi,h)rep(wi,w) cin >> a[hi][wi]; #define ntd(a, h, w) rs(a,h,w);rep(hi,h)rep(wi,w) cin >> a[hi][wi], a[hi][wi]--; #define ntp(a, h, w) fill(a,'#');rep(hi,1,h+1)rep(wi,1,w+1) cin >> a[hi][wi]; //デバッグ #define sp << " " << #define debugName(VariableName) # VariableName #define _deb1(x) cerr << debugName(x)<<" = "<<x << endl #define _deb2(x, y) cerr << debugName(x)<<" = "<<x<<", "<< debugName(y)<<" = "<<y<< endl #define _deb3(x, y, z) cerr << debugName(x)<<" = "<<x << ", " << debugName(y)<<" = "<<y <<", " debugName(z)<<" = "<<z <<endl #define _deb4(x, y, z, a) cerr << debugName(x)<<" = "<<x <<", " << debugName(y)<<" = "<<y <<", " << debugName(z)<<" = "<<z <<", " << debugName(a)<<" = "<<a<<endl #define _deb5(x, y, z, a, b) cerr << debugName(x)<<" = "<<x <<", " << debugName(y)<<" = "<<y <<", " << debugName(z)<<" = "<<z <<", " << debugName(a)<<" = "<<a<<", " << debugName(b)<<" = "<<b<<endl #define _overloadebug(_1, _2, _3, _4, _5, name, ...) name #define debug(...) _overloadebug(__VA_ARGS__,_deb5,_deb4,_deb3,_deb2,_deb1)(__VA_ARGS__) #define deb(...) _overloadebug(__VA_ARGS__,_deb5,_deb4,_deb3,_deb2,_deb1)(__VA_ARGS__) #define debugline(x) cerr << x << " " << "(L:" << __LINE__ << ")" << '\n' void ole() { #ifdef _DEBUG debugline("ole"); exit(0); #endif string a = "a"; rep(i, 30)a += a; rep(i, 1 << 17)cout << a << endl; cout << "OLE 出力長制限超過" << endl; exit(0); } void tle() { while (inf)cout << inf << endl; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll gcd(vi b) { ll res = b[0]; for (auto &&v :b)res = gcd(v, res); return res; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } ll rev(ll a) { ll res = 0; while (a) { res *= 10; res += a % 10; a /= 10; } return res; } template<class T> void rev(vector<T> &a) { reverse(all(a)); } void rev(string &a) { reverse(all(a)); } ll ceil(ll a, ll b) { if (b == 0) { debugline("ceil"); deb(a, b); ole(); return -1; } else return (a + b - 1) / b; } ll sqrt(ll a) { if (a < 0) { debugline("sqrt"); deb(a); ole(); } ll res = (ll) std::sqrt(a); while (res * res < a)res++; return res; } double log(double e, double x) { return log(x) / log(e); } ll sig(ll t) { return (1 + t) * t / 2; } ll sig(ll s, ll t) { return (s + t) * (t - s + 1) / 2; } vi divisors(int v) { vi res; double lim = std::sqrt(v); for (int i = 1; i <= lim; ++i) { if (v % i == 0) { res.pb(i); if (i != v / i)res.pb(v / i); } } return res; } inline bool inside(int h, int w, int H, int W) { return h >= 0 && w >= 0 && h < H && w < W; } inline bool inside(int v, int l, int r) { return l <= v && v < r; } #define ins inside ll u(ll a) { return a < 0 ? 0 : a; } template<class T> vector<T> u(const vector<T> &a) { vector<T> ret = a; fora(v, ret)v = u(v); return ret; } #define MIN(a) numeric_limits<a>::min() #define MAX(a) numeric_limits<a>::max() int n, m, k, d, H, W, x, y, z, q; int cou; vi a, b, c; vvi (s, 0, 0); vvc (ba, 0, 0); vp p; //vb isPrime; vi primes; bool *isprime; int *minfactor; int prime_len = 4010101; inline void setprime() { isprime = MALLOC(bool, prime_len); minfactor = MALLOC(int, prime_len); fill_n(isprime, prime_len, true); fill_n(minfactor, prime_len, 0); isprime[0] = isprime[1] = false; minfactor[0] = 0; minfactor[1] = 1; for (int i = 2; i <= sqrt(prime_len); ++i) { if (!isprime[i])continue; //iは素数 for (int j = 2 * i; j < prime_len; j += i) { isprime[j] = false; if (minfactor[j] == 0)minfactor[j] = i; } } rep(i, prime_len) { if (isprime[i]) { minfactor[i] = i; primes.pb(i); } } } using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; template<class Uint, class BinOp> bool prime_impl(const Uint &n, const Uint *witness, BinOp modmul) { if (n == 2) return true; if (n < 2 || n % 2 == 0) return false; const Uint m = n - 1, d = m / (m & -m); auto modpow = [&](Uint a, Uint b) { Uint res = 1; for (; b; b /= 2) { if (b & 1) res = modmul(res, a); a = modmul(a, a); } return res; }; auto suspect = [&](Uint a, Uint t) { a = modpow(a, t); while (t != n - 1 && a != 1 && a != n - 1) { a = modmul(a, a); t = modmul(t, 2); } return a == n - 1 || t % 2 == 1; }; for (const Uint *w = witness; *w; w++) { if (*w % n != 0 && !suspect(*w, d)) return false; } return true; } bool prime(const u128 &n) { if (!isprime)setprime(); if (n < prime_len)return isprime[n]; assert(n < 1ULL << 63); if (n < 1ULL << 32) { // n < 2^32 constexpr u64 witness[] = {2, 7, 61, 0}; auto modmul = [&](u64 a, u64 b) { return a * b % n; }; return prime_impl<u64>(n, witness, modmul); } else { // n < 2^63 constexpr u128 witness[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022, 0}; // if u128 is available auto modmul = [&](u128 a, u128 b) { return a * b % n; }; return prime_impl<u128>(n, witness, modmul); } } signed main() { cin >> n; rep(i,n){ int x; cin>>x; cout << x<<" "<< prime(x) << endl; } return 0; }