結果

問題 No.806 木を道に
ユーザー kou6839kou6839
提出日時 2019-04-07 15:45:53
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 19 ms / 2,000 ms
コード長 8,336 bytes
コンパイル時間 1,264 ms
コンパイル使用メモリ 125,764 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-27 04:42:57
合計ジャッジ時間 2,638 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <fstream>
#include <array>
#define _USE_MATH_DEFINES
#include <math.h>
#include <unordered_set>
#include<unordered_map>
#include<stdio.h>
using namespace std;
inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }
template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<long long int> vll;
typedef vector<vll> vvll;
typedef vector<string> vs;
typedef pair<int, int> pii;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef unsigned long long ull;
//repetition
//------------------------------------------
#define REP(i,a,b) for(int i=(a);i<(b);++i)
#define rep(i,n) REP(i,0,n)
#define rrep(i,n) for(int i=(n);i>=0;i--)
#define VEC_2D(a,b) vector<vector<int> >(a, vector<int>(b, 0))
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define pb push_back
#define mp make_pair
#define INF (1001000000)
#define SZ(a) int((a).size())
#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)
#define EXIST(s,e) ((s).find(e)!=(s).end())
#define SORT(c) sort((c).begin(),(c).end())
#define UNIQ(c) (c).erase(unique((c).begin(),(c).end()), (c).end());
#define MOD 1000000007LL
#define MS(v,n) memset((v),(n),sizeof(v))
//input
#define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i;
//output
#define P(p) cout<<(p)<<endl;
#define FSP(a) cout << fixed << setprecision(a)
template<typename T> T gcd(T x, T y) {
if (y == 0) return x;
else return gcd(y, x%y);
}
template<typename T> T lcm(T a, T b) {
return a / gcd(a, b) * b;
}
template<typename T> bool is_prime(T n) {
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return n != 1;
}
map<ll, ll> prime_factor(ll n) {
map<ll, ll> res;
for (int i = 2; i * i <= n; i++) {
while (n % i == 0) {
++res[i];
n /= i;
}
}
if (n != 1) res[n] = 1;
return res;
}
int extgcd(int a, int b, int& x, int& y) {//
int d = a;
if (b != 0) {
d = extgcd(b, a%b, y, x);
y -= (a / b)*x;
}
else {
x = 1; y = 0;
}
return d;
}
ll mod_pow(ll x, ll n, ll mod) {
if (n == 0) return 1;
ll res = mod_pow(x * x % mod, n / 2, mod);
if (n & 1) res = res * x % mod;
return res;
}
ll comb(ll a, ll b, ll mod) {
ll mul = 1;
ll div = 1;
rep(i, b) {
mul *= (a - (ll)i);
mul %= mod;
div *= ((ll)i + 1);
div %= mod;
}
mul *= mod_pow(div, mod - 2,mod);
return mul%mod;
}
vector<string> split(const string &str, char delim) {
vector<string> res;
size_t current = 0, found;
while ((found = str.find_first_of(delim, current)) != string::npos) {
res.push_back(string(str, current, found - current));
current = found + 1;
}
res.push_back(string(str, current, str.size() - current));
return res;
}
bool is_kadomatsu(int a, int b, int c) {
if (a == b || a == c || b == c)return false;
if (a > b && c > b) return true;
if (a < b && c < b)return true;
return false;
}
struct UF {
int n;
vi d;
UF() {}
UF(int n) :n(n), d(n, -1) {}
int root(int v) {
if (d[v] < 0) return v;
return d[v] = root(d[v]);
}
bool same(int a, int b) {
return root(a) == root(b);
}
bool unite(int x, int y) {
x = root(x); y = root(y);
if (x == y) return false;
if (size(x) < size(y)) swap(x, y);
d[x] += d[y];
d[y] = x;
return true;
}
int size(int v) { return -d[root(v)]; }
};
struct Fibonacci {
vvll fib;
Fibonacci() {
fib.resize(2, vll(2));
fib[0][0] = 1; fib[0][1] = 1;
fib[1][0] = 1; fib[1][1] = 0;
}
vvll mul(vvll &A, vvll &B) {
vvll C(2, vll(2));
rep(i, 2) {
rep(k, 2) {
rep(j, 2) {
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD;
}
}
}
return C;
}
ll pow(ll n) {
vvll A = fib;
vvll B(2, vll(2));
rep(i, 2) {
B[i][i] = 1;
}
while (n > 0) {
if (n & 1)B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B[1][0];
}
};
vector<int> divisor(int n) {
if (n == 1) return{};
vi res;
for (int i = 1; i*i <= n; i++) {
if (n%i == 0) {
res.emplace_back(i);
if (i != 1 && i != n / i)res.emplace_back(n / i);
}
}
return res;
}
struct Bellmanford {
int n;
struct edge {
int from, to, cost;
};
vector<edge> E;
vi d;
Bellmanford(int n) :n(n), d(n) {
E.resize(n);
}
void add_edge(int x, int y, int cost) {
edge e;
e.from = x; e.to = y; e.cost = cost;
E.push_back(e);
}
void shortest_path(int s) {
rep(i, n)d[i] = INF;
d[s] = 0;
while (true) {
bool update = false;
for (auto e : E) {
if (d[e.from] != INF && d[e.to] > d[e.from] + e.cost) {
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if (!update) break;
}
}
};
struct Dijkstra {
int n;
struct edge {
int to; ll cost;
};
vector<vector<edge>> G;
vll d;
Dijkstra(int n) :n(n), d(n) {
G.resize(n);
}
void add_edge(int x, int y, ll cost) {
edge e;
e.to = y; e.cost = cost;
G[x].push_back(e);
}
void shortest_path(int s) {
rep(i, n)d[i] = 100000000000000000;
d[s] = 0;
priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> que;
que.push(make_pair(0, s));
while (!que.empty()) {
pii p = que.top(); que.pop();
int v = p.second;
if (d[v] < p.first) continue;
for (auto e : G[v]) {
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
que.push(make_pair(d[e.to], e.to));
}
}
}
}
};
struct Segmenttree {
int n;
vector<int> dat;
Segmenttree(int n_) {
n = 1;
while (n < n_) n *= 2;
dat = vector<int>(2 * n - 1, 0);
}
void add(int idx, ll val) {//0-indexed
idx += n - 1;
dat[idx] += val;
while (idx > 0) {
idx = (idx - 1) / 2;
dat[idx] += val;
}
}
int query(int a, int b) {
return query_seg(a, b, 0, 0, n);
}
int query_seg(int a, int b, int k, int l, int r) {
if (r <= a || b <= l) return 0;
if (a <= l && r <= b)return dat[k];
else {
return query_seg(a, b, k * 2 + 1, l, (l + r) / 2) + query_seg(a, b, k * 2 + 2, (l + r) / 2, r);
}
}
};
struct Trie {
Trie *next[26];
Trie() {
fill(next, next + 26, (Trie *)0);
}
void insert(char *s) {
if (*s == '\0') return;
if (this->next[*s - 'a'] == NULL) {
this->next[*s - 'a'] = new Trie();
}
this->next[*s - 'a']->insert(s + 1);
}
bool find(char *s) {
if (*s == '\0') return true;
if (this->next[*s - 'a'] == NULL) {
return false;
}
return this->next[*s - 'a']->find(s + 1);
}
};
struct BIT {
int n;
vi bit;
BIT() {}
BIT(int n):n(n) {
bit.resize(n + 1);
}
int sum(int i) {
int s = 0;
while (i > 0) {
s += bit[i];
i -= i&-i;
}
return s;
}
void add(int i, int x) {
while (i <= n) {
bit[i] += x;
i += i&-i;
}
}
};
/*
struct edge { int to, cap, rev; };
vector<edge> G[200005];
int level[200005];
int iter[200005];
void add_edge(int from, int to, int cap) {
G[from].push_back({ to, cap, (int)G[to].size() });
G[to].push_back({ from, 0, (int)G[from].size() - 1 });
}
void fbfs(int s) {
memset(level, -1, sizeof(level));
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty()) {
int v = que.front(); que.pop();
for (edge &e : G[v]) {
if (e.cap > 0 && level[e.to] < 0) {
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
int fdfs(int v, int t, int f) {
if (v == t) return f;
for (edge &e : G[v]) {
if (e.cap > 0 && level[v] < level[e.to]) {
int d = fdfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t) {
int flow = 0;
for (;;) {
fbfs(s);
if (level[t] < 0) return flow;
memset(iter, 0, sizeof(iter));
int f;
while ((f = fdfs(s, t, INF)) > 0) {
flow += f;
}
}
}
*/
//------------------------
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
vi g(N);
rep(i, N-1) {
int a, b;
cin >> a >> b;
a--; b--;
g[a]++;
g[b]++;
}
int ans = 0;
rep(i, N) {
ans += max(0, g[i] - 2);
}
P(ans);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0