結果
| 問題 |
No.274 The Wall
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-04-12 12:30:31 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 900 ms / 2,000 ms |
| コード長 | 4,283 bytes |
| コンパイル時間 | 1,782 ms |
| コンパイル使用メモリ | 176,976 KB |
| 実行使用メモリ | 389,120 KB |
| 最終ジャッジ日時 | 2025-03-17 19:02:23 |
| 合計ジャッジ時間 | 4,740 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 23 |
ソースコード
#include <bits/stdc++.h>
#define FOR(v, a, b) for(int v = (a); v < (b); ++v)
#define FORE(v, a, b) for(int v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(int v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define LLI long long int
#define fst first
#define snd second
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(x) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
template <typename Cost = int> class Edge{
public:
int from,to;
Cost cost;
Edge() {}
Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
Edge rev() const {return Edge(to,from,cost);}
static bool cmp_to_lt(const Edge &e1, const Edge &e2){return e1.to < e2.to;}
static bool cmp_cost_lt(const Edge &e1, const Edge &e2){return e1.cost < e2.cost;}
static bool cmp_to_gt(const Edge &e1, const Edge &e2){return e1.to > e2.to;}
static bool cmp_cost_gt(const Edge &e1, const Edge &e2){return e1.cost > e2.cost;}
friend ostream& operator<<(ostream &os, const Edge &e){
os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
return os;
}
};
template <typename T> using Graph = vector<vector<Edge<T>>>;
template <typename T> vector<int> strongly_connected_components(Graph<T> &graph){
int n = graph.size();
vector<bool> visit(n);
vector<int> check(n);
function<void(int)> dfs =
[&](int cur){
visit[cur] = true;
for(auto &e : graph[cur]) if(!visit[e.to]) dfs(e.to);
check.push_back(cur);
};
REP(i,n) if(!visit[i]) dfs(i);
Graph<T> rgraph(n);
REP(i,n) for(auto &e : graph[i]) rgraph[e.to].push_back(e.rev());
vector<int> ret(n,-1);
reverse(ALL(check));
function<void(int,int)> rdfs =
[&](int cur, int i){
ret[cur] = i;
for(auto &e : rgraph[cur]) if(ret[e.to] == -1) rdfs(e.to,i);
};
int i = 0;
for(auto c : check) if(ret[c] == -1) {rdfs(c,i); ++i;}
return ret;
}
class two_sat{
int n;
Graph<int> g;
public:
two_sat(int n): n(n), g(2*n){}
int inv(int i){ // not
if(i<n) return i+n;
else return i-n;
}
void add(int a, int b){
if(a == b){ // a ∨ a <=> (a => !a)
g[a].push_back(Edge<int>(a, inv(a), 1));
}else{ // a ∨ b <=> (a => !b) ∧ (b => !a)
g[a].push_back(Edge<int>(a, inv(b), 1));
g[b].push_back(Edge<int>(b, inv(a), 1));
}
}
bool solve(){
auto s = strongly_connected_components(g);
REP(i,n){
if(s[i] == s[i+n]) return false;
}
return true;
}
};
bool intersect(int l1, int r1, int l2, int r2){
if(r1 < l2 or r2 < l1) return false;
else return true;
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int N,M;
while(cin >> N >> M){
vector<int> L(N), R(N);
REP(i,N) cin >> L[i] >> R[i];
vector<int> L2(N), R2(N);
REP(i,N){
R2[i] = M - L[i] - 1;
L2[i] = M - R[i] - 1;
}
two_sat sat(N);
REP(i,N){
FOR(j,i+1,N){
if(intersect(L[i],R[i],L[j],R[j])) sat.add(sat.inv(i), sat.inv(j));
if(intersect(L[i],R[i],L2[j],R2[j])) sat.add(sat.inv(i), j);
if(intersect(L2[i],R2[i],L[j],R[j])) sat.add(i, sat.inv(j));
if(intersect(L2[i],R2[i],L2[j],R2[j])) sat.add(i,j);
}
}
bool ans = sat.solve();
cout << (ans ? "YES" : "NO") << endl;
}
return 0;
}