結果

問題 No.811 約数の個数の最大化
ユーザー Tiramister
提出日時 2019-04-12 21:33:06
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 27 ms / 2,000 ms
コード長 6,909 bytes
コンパイル時間 1,218 ms
コンパイル使用メモリ 120,888 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-14 17:23:33
合計ジャッジ時間 1,982 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 12
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// IO
#include <cstdio>
#include <iomanip>
#include <ios>
#include <iostream>
// algorithm
#include <algorithm>
#include <cmath>
#include <numeric>
// container
#include <vector>
#include <string>
#include <tuple>
#include <set>
#include <map>
#include <unordered_map>
#include <stack>
#include <queue>
#include <deque>
// others
#include <random>
#include <limits>
#include <functional>
#include <ctime>
#include <cassert>
// type alias
using lint = long long;
using ldouble = long double;
template <class T>
using greater_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;
/* ----- class ----- */
template <class Cost = int>
struct Edge {
int from, to;
Cost cost;
Edge(int from = -1, int to = -1, Cost cost = 1)
: from(from), to(to), cost(cost){};
bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; }
bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; }
};
template <class Cost = int>
using Edges = std::vector<Edge<Cost>>;
template <class Cost = int>
class Graph {
public:
int size;
std::vector<std::vector<Edge<Cost>>> path;
explicit Graph(int N = 0) : size(N), path(size) {}
void span(int from, int to, Cost cost = 1) {
path[from].push_back(Edge<Cost>(from, to, cost));
}
std::vector<Edge<Cost>>& operator[](int v) { return path[v]; }
};
/* ----- Output Functions for Debugging ----- */
template <class T>
std::ostream& operator<<(std::ostream& os, std::vector<T> v);
template <class T>
std::ostream& operator<<(std::ostream& os, std::set<T> v);
template <class L, class R>
std::ostream& operator<<(std::ostream& os, std::pair<L, R> p);
template <class K, class T>
std::ostream& operator<<(std::ostream& os, std::map<K, T> v);
template <class T>
std::ostream& operator<<(std::ostream& os, std::stack<T> s);
template <class T>
std::ostream& operator<<(std::ostream& os, std::queue<T> q);
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T> q);
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T, std::vector<T>, std::greater<T>> q);
template <class T>
std::ostream& operator<<(std::ostream& os, Edge<T> e);
template <class T>
std::ostream& operator<<(std::ostream& os, std::vector<T> v) {
os << "[";
for (auto vv : v) os << vv << ",";
return os << "]";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::set<T> v) {
os << "{";
for (auto vv : v) os << vv << ",";
return os << "}";
}
template <class L, class R>
std::ostream& operator<<(std::ostream& os, std::pair<L, R> p) {
return os << "(" << p.first << "," << p.second << ")";
}
template <class K, class T>
std::ostream& operator<<(std::ostream& os, std::map<K, T> v) {
os << "{";
for (auto vv : v) os << vv << ",";
return os << "}";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::stack<T> s) {
os << "[";
while (!s.empty()) {
os << s.top() << ",";
s.pop();
}
return os << "]";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::queue<T> q) {
os << "[";
while (!q.empty()) {
os << q.front() << ",";
q.pop();
}
return os << "]";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T> q) {
os << "{";
while (!q.empty()) {
os << q.top() << ",";
q.pop();
}
return os << "}";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T, std::vector<T>, std::greater<T>> q) {
os << "{";
while (!q.empty()) {
os << q.top() << ",";
q.pop();
}
return os << "}";
}
template <class T>
std::ostream& operator<<(std::ostream& os, Edge<T> e) {
return os << "(" << e.from << "->" << e.to << ":" << e.cost << ")";
}
/* ----- Short Functions ----- */
template <class T>
inline T sq(T a) { return a * a; }
template <class T>
inline T iceil(T n, T d) { return (n + d - 1) / d; }
template <class T>
T gcd(T a, T b) {
while (b > 0) {
a %= b;
std::swap(a, b);
}
return a;
}
template <class T, class U>
T ipow(T b, U n) {
T ret = 1;
while (n > 0) {
if (n & 1) ret *= b;
n >>= 1;
b *= b;
}
return ret;
}
// 0-indexed
template <class T, class U>
inline T kthbit(T a, U k) { return (a >> k) & 1; }
template <class T, class U>
inline T mask(T a, U k) { return a & ((1 << k) - 1); }
template <class T>
std::map<T, int> compress(std::vector<T>& v) {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
std::map<T, int> rev;
for (int i = 0; i < v.size(); ++i) rev[v[i]] = i;
return rev;
}
template <class T>
T Vec(T v) { return v; }
template <class T, class... Ts>
auto Vec(size_t l, Ts... ts) {
return std::vector<decltype(Vec<T>(ts...))>(l, Vec<T>(ts...));
}
/* ----- Constants ----- */
// const int INF = std::numeric_limits<int>::max() / 3;
// const ll INF = std::numeric_limits<ll>::max() / 3;
// const ld PI = acos(-1);
// const ld EPS = 1e-10;
// std::mt19937 mt(int(std::time(nullptr)));
class Prime {
using lint = long long;
public:
int MAX_V;
std::vector<int> primes;
std::vector<bool> isp;
explicit Prime(int N) : MAX_V(N) {
isp.assign(MAX_V + 1, true);
isp[0] = isp[1] = false;
for (int i = 2; i * i <= MAX_V; ++i) {
if (isp[i]) {
for (int j = i; i * j <= MAX_V; ++j) {
isp[i * j] = false;
}
}
}
for (int p = 2; p <= MAX_V; ++p) {
if (isp[p]) primes.push_back(p);
}
}
bool isprime(lint N) const {
if (N <= MAX_V) return isp[N];
for (lint p : primes) {
if (p * p > N) break;
if (N % p == 0) return false;
}
return true;
}
std::vector<std::pair<lint, int>> factorization(lint N) const {
std::vector<std::pair<lint, int>> ret;
for (lint p : primes) {
if (p * p > N) break;
if (N % p != 0) continue;
int cnt = 0;
while (N % p == 0) {
N /= p;
++cnt;
}
ret.emplace_back(p, cnt);
}
if (N > 1) ret.emplace_back(N, 1);
return ret;
}
};
const Prime P(100010);
int main() {
int N, K;
std::cin >> N >> K;
int ans = 0, maxf = 0;
for (int n = 1; n < N; ++n) {
int g = gcd(N, n);
auto facts = P.factorization(g);
int f = 0;
for (auto p : facts) f += p.second;
if (f < K) continue;
facts = P.factorization(n);
f = 1;
for (auto p : facts) f *= (p.second + 1);
if (maxf < f) {
ans = n;
maxf = f;
}
}
std::cout << ans << std::endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0