結果

問題 No.812 Change of Class
ユーザー TiramisterTiramister
提出日時 2019-04-12 21:46:04
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 636 ms / 4,000 ms
コード長 7,277 bytes
コンパイル時間 1,347 ms
コンパイル使用メモリ 126,008 KB
実行使用メモリ 12,176 KB
最終ジャッジ日時 2024-06-12 06:47:21
合計ジャッジ時間 14,562 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 60
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// IO
#include <cstdio>
#include <iomanip>
#include <ios>
#include <iostream>
// algorithm
#include <algorithm>
#include <cmath>
#include <numeric>
// container
#include <vector>
#include <string>
#include <tuple>
#include <set>
#include <map>
#include <unordered_map>
#include <stack>
#include <queue>
#include <deque>
// others
#include <random>
#include <limits>
#include <functional>
#include <ctime>
#include <cassert>
// type alias
using lint = long long;
using ldouble = long double;
template <class T>
using greater_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;
/* ----- class ----- */
template <class Cost = int>
struct Edge {
int from, to;
Cost cost;
Edge(int from = -1, int to = -1, Cost cost = 1)
: from(from), to(to), cost(cost){};
bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; }
bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; }
};
template <class Cost = int>
using Edges = std::vector<Edge<Cost>>;
template <class Cost = int>
class Graph {
public:
int size;
std::vector<std::vector<Edge<Cost>>> path;
explicit Graph(int N = 0) : size(N), path(size) {}
void span(int from, int to, Cost cost = 1) {
path[from].push_back(Edge<Cost>(from, to, cost));
}
std::vector<Edge<Cost>>& operator[](int v) { return path[v]; }
};
/* ----- Output Functions for Debugging ----- */
template <class T>
std::ostream& operator<<(std::ostream& os, std::vector<T> v);
template <class T>
std::ostream& operator<<(std::ostream& os, std::set<T> v);
template <class L, class R>
std::ostream& operator<<(std::ostream& os, std::pair<L, R> p);
template <class K, class T>
std::ostream& operator<<(std::ostream& os, std::map<K, T> v);
template <class T>
std::ostream& operator<<(std::ostream& os, std::stack<T> s);
template <class T>
std::ostream& operator<<(std::ostream& os, std::queue<T> q);
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T> q);
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T, std::vector<T>, std::greater<T>> q);
template <class T>
std::ostream& operator<<(std::ostream& os, Edge<T> e);
template <class T>
std::ostream& operator<<(std::ostream& os, std::vector<T> v) {
os << "[";
for (auto vv : v) os << vv << ",";
return os << "]";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::set<T> v) {
os << "{";
for (auto vv : v) os << vv << ",";
return os << "}";
}
template <class L, class R>
std::ostream& operator<<(std::ostream& os, std::pair<L, R> p) {
return os << "(" << p.first << "," << p.second << ")";
}
template <class K, class T>
std::ostream& operator<<(std::ostream& os, std::map<K, T> v) {
os << "{";
for (auto vv : v) os << vv << ",";
return os << "}";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::stack<T> s) {
os << "[";
while (!s.empty()) {
os << s.top() << ",";
s.pop();
}
return os << "]";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::queue<T> q) {
os << "[";
while (!q.empty()) {
os << q.front() << ",";
q.pop();
}
return os << "]";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T> q) {
os << "{";
while (!q.empty()) {
os << q.top() << ",";
q.pop();
}
return os << "}";
}
template <class T>
std::ostream& operator<<(std::ostream& os, std::priority_queue<T, std::vector<T>, std::greater<T>> q) {
os << "{";
while (!q.empty()) {
os << q.top() << ",";
q.pop();
}
return os << "}";
}
template <class T>
std::ostream& operator<<(std::ostream& os, Edge<T> e) {
return os << "(" << e.from << "->" << e.to << ":" << e.cost << ")";
}
/* ----- Short Functions ----- */
template <class T>
inline T sq(T a) { return a * a; }
template <class T>
inline T iceil(T n, T d) { return (n + d - 1) / d; }
template <class T>
T gcd(T a, T b) {
while (b > 0) {
a %= b;
std::swap(a, b);
}
return a;
}
template <class T, class U>
T ipow(T b, U n) {
T ret = 1;
while (n > 0) {
if (n & 1) ret *= b;
n >>= 1;
b *= b;
}
return ret;
}
// 0-indexed
template <class T, class U>
inline T kthbit(T a, U k) { return (a >> k) & 1; }
template <class T, class U>
inline T mask(T a, U k) { return a & ((1 << k) - 1); }
template <class T>
std::map<T, int> compress(std::vector<T>& v) {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
std::map<T, int> rev;
for (int i = 0; i < v.size(); ++i) rev[v[i]] = i;
return rev;
}
template <class T>
T Vec(T v) { return v; }
template <class T, class... Ts>
auto Vec(size_t l, Ts... ts) {
return std::vector<decltype(Vec<T>(ts...))>(l, Vec<T>(ts...));
}
/* ----- Constants ----- */
const int INF = std::numeric_limits<int>::max() / 3;
// const ll INF = std::numeric_limits<ll>::max() / 3;
// const ld PI = acos(-1);
// const ld EPS = 1e-10;
// std::mt19937 mt(int(std::time(nullptr)));
class UnionFind {
private:
std::vector<int> par, num;
int find(int v) {
return (par[v] == v) ? v : (par[v] = find(par[v]));
}
public:
explicit UnionFind(int N) : par(N), num(N, 1) {
std::iota(par.begin(), par.end(), 0);
}
void unite(int u, int v) {
u = find(u), v = find(v);
if (u == v) return;
if (num[u] < num[v]) std::swap(u, v);
num[u] += num[v];
par[v] = u;
}
bool same(int u, int v) { return find(u) == find(v); }
bool ispar(int v) { return v == find(v); }
int size(int v) { return num[find(v)]; }
};
template <class Cost>
std::vector<Cost> dijkstra(Graph<Cost>& graph, std::vector<int> ss) {
std::vector<Cost> dist(graph.size, INF);
std::priority_queue<std::pair<int, Cost>, std::vector<std::pair<int, Cost>>, std::greater<std::pair<int, Cost>>> que;
for (auto s : ss) {
dist[s] = 0;
que.emplace(0, s);
}
while (!que.empty()) {
int v;
Cost d;
std::tie(d, v) = que.top();
que.pop();
if (d > dist[v]) continue;
for (auto e : graph[v]) {
if (dist[e.to] <= dist[v] + e.cost) continue;
dist[e.to] = dist[v] + e.cost;
que.emplace(dist[e.to], e.to);
}
}
return dist;
}
int main() {
int N, M;
std::cin >> N >> M;
Graph<> graph(N);
UnionFind uf(N);
for (int i = 0; i < M; ++i) {
int p, q;
std::cin >> p >> q;
--p, --q;
graph.span(p, q);
graph.span(q, p);
uf.unite(p, q);
}
int Q;
std::cin >> Q;
for (int q = 0; q < Q; ++q) {
int a;
std::cin >> a;
--a;
std::cout << uf.size(a) - 1 << " ";
auto dist = dijkstra<>(graph, {a});
// std::cerr << dist << std::endl;
int max = 1;
for (auto d : dist) {
if (0 < d && d < INF) max = std::max(max, d);
}
int day;
for (day = 0; day < 30; ++day) {
if ((1 << day) >= max) break;
}
std::cout << day << std::endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0