結果
| 問題 |
No.470 Inverse S+T Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-04-20 16:43:35 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 35 ms / 2,000 ms |
| コード長 | 5,577 bytes |
| コンパイル時間 | 2,483 ms |
| コンパイル使用メモリ | 200,448 KB |
| 実行使用メモリ | 23,620 KB |
| 最終ジャッジ日時 | 2024-12-22 13:52:38 |
| 合計ジャッジ時間 | 3,914 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 27 |
ソースコード
#include <bits/stdc++.h>
#define FOR(v, a, b) for(int v = (a); v < (b); ++v)
#define FORE(v, a, b) for(int v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(int v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define LLI long long int
#define fst first
#define snd second
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(x) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
template <typename Cost = int> class Edge{
public:
int from,to;
Cost cost;
Edge() {}
Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
Edge rev() const {return Edge(to,from,cost);}
static bool cmp_to_lt(const Edge &e1, const Edge &e2){return e1.to < e2.to;}
static bool cmp_cost_lt(const Edge &e1, const Edge &e2){return e1.cost < e2.cost;}
static bool cmp_to_gt(const Edge &e1, const Edge &e2){return e1.to > e2.to;}
static bool cmp_cost_gt(const Edge &e1, const Edge &e2){return e1.cost > e2.cost;}
friend ostream& operator<<(ostream &os, const Edge &e){
os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
return os;
}
};
template <typename T> using Graph = vector<vector<Edge<T>>>;
template <typename T> vector<int> strongly_connected_components(Graph<T> &graph){
int n = graph.size();
vector<bool> visit(n);
vector<int> check;
function<void(int)> dfs =
[&](int cur){
visit[cur] = true;
for(auto &e : graph[cur]) if(!visit[e.to]) dfs(e.to);
check.push_back(cur);
};
REP(i,n) if(!visit[i]) dfs(i);
Graph<T> rgraph(n);
REP(i,n) for(auto &e : graph[i]) rgraph[e.to].push_back(e.rev());
vector<int> ret(n,-1);
reverse(ALL(check));
function<void(int,int)> rdfs =
[&](int cur, int i){
ret[cur] = i;
for(auto &e : rgraph[cur]) if(ret[e.to] == -1) rdfs(e.to,i);
};
int i = 0;
for(auto c : check) if(ret[c] == -1) {rdfs(c,i); ++i;}
return ret;
}
bool tsort(const Graph<int> &graph, vector<int> &ret){
int n = graph.size();
vector<int> indeg(n);
REP(i,n){
for(auto &e : graph[i]){
++indeg[e.to];
}
}
stack<int> st;
REV(i,n-1,0){
if(indeg[i]==0) st.push(i);
}
while(!st.empty()){
int cur = st.top(); st.pop();
ret.push_back(cur);
for(auto &e : graph[cur]){
--indeg[e.to];
if(indeg[e.to]==0){
st.push(e.to);
}
}
}
return (int)ret.size() == n;
}
class two_sat{
int n;
Graph<int> g;
public:
two_sat(int n): n(n), g(2*n){}
int inv(int i){ // not
if(i<n) return i+n;
else return i-n;
}
void add(int a, int b){
if(a == b){ // a ∨ a <=> (!a => a)
g[inv(a)].push_back(Edge<int>(inv(a), a, 1));
}else{ // a ∨ b <=> (!a => b) ∧ (!b => a)
g[inv(a)].push_back(Edge<int>(inv(a), b, 1));
g[inv(b)].push_back(Edge<int>(inv(b), a, 1));
}
}
void not_coexist(int a, int b){ // !(A ∧ B) <=> (!A ∨ !B)
add(inv(a), inv(b));
}
bool solve(vector<bool> &ret){
auto s = strongly_connected_components(g);
REP(i,n) if(s[i] == s[i+n]){
dump(i);
return false;
}
int m = *max_element(ALL(s)) + 1;
Graph<int> g2(m);
vector<int> ts;
for(auto &v : g){
for(auto &e : v){
if(s[e.from] != s[e.to]) g2[s[e.from]].push_back(Edge<int>(s[e.from], s[e.to], 1));
}
}
tsort(g2, ts);
vector<int> r(m);
REP(i,m) r[ts[i]] = i;
ret = vector<bool>(n);
REP(i,n) ret[i] = r[s[i]] > r[s[i+n]];
return true;
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int N;
while(cin >> N){
vector<string> U(N); cin >> U;
vector<string> S1(N), T1(N), S2(N), T2(N);
REP(i,N){
S1[i] = {U[i][0], U[i][1]};
T1[i] = {U[i][2]};
S2[i] = {U[i][0]};
T2[i] = {U[i][1], U[i][2]};
}
two_sat sat(N);
set<char> cnt;
for(auto &s : U) for(auto &c : s) cnt.insert(c);
if((int)cnt.size() < N){
cout << "Impossible" << endl;
continue;
}
REP(i,N){
FOR(j,i+1,N){
if(S1[i] == S1[j] or T1[i] == T1[j]) sat.not_coexist(i, j);
if(S1[i] == T2[j] or T1[i] == S2[j]) sat.not_coexist(i, sat.inv(j));
if(S2[i] == T1[j] or T2[i] == S1[j]) sat.not_coexist(sat.inv(i), j);
if(S2[i] == S2[j] or T2[i] == T2[j]) sat.not_coexist(sat.inv(i), sat.inv(j));
}
}
vector<bool> ret;
bool ans = sat.solve(ret);
if(ans){
REP(i,N){
if(ret[i]) cout << S1[i] << " " << T1[i] << endl;
else cout << S2[i] << " " << T2[i] << endl;
}
}else{
cout << "Impossible" << endl;
}
}
return 0;
}