結果
問題 | No.829 成長関数インフレ中 |
ユーザー | Pachicobue |
提出日時 | 2019-04-23 17:36:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 838 ms / 2,000 ms |
コード長 | 24,783 bytes |
コンパイル時間 | 2,617 ms |
コンパイル使用メモリ | 224,108 KB |
実行使用メモリ | 55,524 KB |
最終ジャッジ日時 | 2024-10-15 00:43:40 |
合計ジャッジ時間 | 6,861 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 35 ms
7,040 KB |
testcase_13 | AC | 4 ms
5,248 KB |
testcase_14 | AC | 26 ms
6,016 KB |
testcase_15 | AC | 159 ms
16,444 KB |
testcase_16 | AC | 338 ms
29,436 KB |
testcase_17 | AC | 564 ms
32,832 KB |
testcase_18 | AC | 753 ms
53,336 KB |
testcase_19 | AC | 616 ms
32,788 KB |
testcase_20 | AC | 838 ms
55,524 KB |
testcase_21 | AC | 23 ms
5,504 KB |
ソースコード
#include <bits/stdc++.h> #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" #define NDEBUG #define SHOW(...) static_cast<void>(0) //!===========================================================!// //! dP dP dP !// //! 88 88 88 !// //! 88aaaaa88a .d8888b. .d8888b. .d888b88 .d8888b. 88d888b. !// //! 88 88 88ooood8 88' '88 88' '88 88ooood8 88' '88 !// //! 88 88 88. ... 88. .88 88. .88 88. ... 88 !// //! dP dP '88888P' '88888P8 '88888P8 '88888P' dP !// //!===========================================================!// using ld = long double; using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr unsigned int MOD = 1000000007; template <typename T> constexpr T INF = std::numeric_limits<T>::max() / 4; template <typename F> constexpr F PI = static_cast<F>(3.1415926535897932385); std::mt19937 mt{std::random_device{}()}; template <typename T> bool chmin(T& a, const T& b) { return a = std::min(a, b), a == b; } template <typename T> bool chmax(T& a, const T& b) { return a = std::max(a, b), a == b; } template <typename T> std::vector<T> Vec(const std::size_t n, T v) { return std::vector<T>(n, v); } template <class... Args> auto Vec(const std::size_t n, Args... args) { return std::vector<decltype(Vec(args...))>(n, Vec(args...)); } template <typename T> constexpr T popCount(const T u) { #ifdef __has_builtin return u == 0 ? T(0) : (T)__builtin_popcountll(u); #else unsigned long long v = static_cast<unsigned long long>(u); return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<T>(v * 0x0101010101010101ULL >> 56 & 0x7f); #endif } template <typename T> constexpr T log2p1(const T u) { #ifdef __has_builtin return u == 0 ? T(0) : T(64 - __builtin_clzll(u)); #else unsigned long long v = static_cast<unsigned long long>(u); return v = static_cast<unsigned long long>(v), v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), popCount(v); #endif } template <typename T> constexpr T clog(const T v) { return v == 0 ? T(0) : log2p1(v - 1); } template <typename T> constexpr T msbp1(const T v) { return log2p1(v); } template <typename T> constexpr T lsbp1(const T v) { #ifdef __has_builtin return __builtin_ffsll(v); #else return v == 0 ? T(0) : popCount((v & (-v)) - T(1)) + T(1); #endif } template <typename T> constexpr bool ispow2(const T v) { return popCount(v) == 1; } template <typename T> constexpr T ceil2(const T v) { return v == 0 ? T(1) : T(1) << log2p1(v - 1); } template <typename T> constexpr T floor2(const T v) { return v == 0 ? T(0) : T(1) << (log2p1(v) - 1); } //!===============================================================!// //! 88888888b dP .88888. a88888b. 888888ba !// //! 88 88 d8' '88 d8' '88 88 '8b !// //! a88aaaa dP. .dP d8888P 88 88 88 88 !// //! 88 '8bd8' 88 88 YP88 88 88 88 !// //! 88 .d88b. 88 Y8. .88 Y8. .88 88 .8P !// //! 88888888P dP' 'dP dP '88888' Y88888P' 8888888P !// //!===============================================================!// template <typename T> constexpr std::pair<T, T> extgcd(const T a, const T b) { if (b == 0) { return std::pair<T, T>{1, 0}; } const auto p = extgcd(b, a % b); return {p.second, p.first - p.second * (a / b)}; } template <typename T> constexpr T inverse(const T a, const T mod) { return (mod + extgcd((mod + a % mod) % mod, mod).first % mod) % mod; } //!========================================================!// //! 8888ba.88ba dP dP dP !// //! 88 '8b '8b 88 88 88 !// //! 88 88 88 .d8888b. .d888b88 88 88d888b. d8888P !// //! 88 88 88 88' '88 88' '88 88 88' '88 88 !// //! 88 88 88 88. .88 88. .88 88 88 88 88 !// //! dP dP dP '88888P' '88888P8 dP dP dP dP !// //!========================================================!// template <uint mod> class ModInt { private: uint v; static uint norm(const uint& x) { return x < mod ? x : x - mod; } static ModInt make(const uint& x) { ModInt m; return m.v = x, m; } static ModInt power(ModInt x, ll n) { ModInt ans = 1; for (; n; n >>= 1, x *= x) { if (n & 1) { ans *= x; } } return ans; } static ModInt inv(const ModInt& x) { return ModInt{inverse((ll)x.v, (ll)mod)}; } public: ModInt() : v{0} {} ModInt(const ll val) : v{norm(uint(val % (ll)mod + (ll)mod))} {} ModInt(const ModInt<mod>& n) : v{n()} {} explicit operator bool() const { return v != 0; } ModInt<mod>& operator=(const ModInt<mod>& n) { return v = n(), (*this); } ModInt<mod>& operator=(const ll val) { return v = norm(uint(val % (ll)mod + (ll)mod)), (*this); } ModInt<mod> operator+() const { return *this; } ModInt<mod> operator-() const { return make(norm(mod - v)); } ModInt<mod> operator+(const ModInt<mod>& val) const { return make(norm(v + val())); } ModInt<mod> operator-(const ModInt<mod>& val) const { return make(norm(v + mod - val())); } ModInt<mod> operator*(const ModInt<mod>& val) const { return make((uint)((ll)v * val() % (ll)mod)); } ModInt<mod> operator/(const ModInt<mod>& val) const { return *this * inv(val()); } ModInt<mod>& operator+=(const ModInt<mod>& val) { return *this = *this + val; } ModInt<mod>& operator-=(const ModInt<mod>& val) { return *this = *this - val; } ModInt<mod>& operator*=(const ModInt<mod>& val) { return *this = *this * val; } ModInt<mod>& operator/=(const ModInt<mod>& val) { return *this = *this / val; } ModInt<mod> operator+(const ll val) const { return ModInt{v + val}; } ModInt<mod> operator-(const ll val) const { return ModInt{v - val}; } ModInt<mod> operator*(const ll val) const { return ModInt{(ll)v * (val % mod)}; } ModInt<mod> operator/(const ll val) const { return ModInt{(ll)v * inv(val)}; } template <typename I> ModInt<mod> operator^(const I n) const { return power(v, n); } ModInt<mod>& operator+=(const ll val) { return *this = *this + val; } ModInt<mod>& operator-=(const ll val) { return *this = *this - val; } ModInt<mod>& operator*=(const ll val) { return *this = *this * val; } ModInt<mod>& operator/=(const ll val) { return *this = *this / val; } template <typename I> ModInt<mod>& operator^=(const I n) { return (*this) = ((*this) ^ n); } bool operator==(const ModInt<mod>& val) const { return v == val.v; } bool operator!=(const ModInt<mod>& val) const { return not(*this == val); } bool operator==(const ll val) const { return v == norm(uint((ll)mod + val % (ll)mod)); } bool operator!=(const ll val) const { return not(*this == val); } uint operator()() const { return v; } }; template <uint mod> inline ModInt<mod> operator+(const ll val, const ModInt<mod>& n) { return n + val; } template <uint mod> inline ModInt<mod> operator-(const ll val, const ModInt<mod>& n) { return ModInt<mod>{val - (ll)n()}; } template <uint mod> inline ModInt<mod> operator*(const ll val, const ModInt<mod>& n) { return n * val; } template <uint mod> inline ModInt<mod> operator/(const ll val, const ModInt<mod>& n) { return ModInt<mod>(val) / n; } template <uint mod> inline bool operator==(const ll val, const ModInt<mod>& n) { return n == val; } template <uint mod> inline bool operator!=(const ll val, const ModInt<mod>& n) { return not(val == n); } template <uint mod> inline std::istream& operator>>(std::istream& is, ModInt<mod>& n) { uint v; return is >> v, n = v, is; } template <uint mod> std::ostream& operator<<(std::ostream& os, const ModInt<mod>& n) { return (os << n()); } //!============================================================================!// //! 8888ba.88ba dP a88888b. dP !// //! 88 '8b '8b 88 d8' '88 88 !// //! 88 88 88 .d8888b. .d888b88 88 .d8888b. 88d8b.d8b. 88d888b. !// //! 88 88 88 88' '88 88' '88 88 88' '88 88''88''88 88' '88 !// //! 88 88 88 88. .88 88. .88 Y8. .88 88. .88 88 88 88 88. .88 !// //! dP dP dP '88888P' '88888P8 Y88888P' '88888P' dP dP dP 88Y8888' !// //!============================================================================!// template <uint mod> class ModComb { public: ModComb(const std::size_t N) : f(N + 1, ModInt<mod>(1)), in(N + 1, ModInt<mod>(1)), invf(N + 1, ModInt<mod>(1)) { for (uint i = 2; i <= N; i++) { f[i] = f[i - 1] * i, in[i] = (mod - (mod / i)) * in[mod % i], invf[i] = invf[i - 1] * in[i]; } } ModInt<mod> fact(const std::size_t N) const { return f[N]; } ModInt<mod> inv(const std::size_t N) const { return in[N]; } ModInt<mod> invFact(const std::size_t N) const { return invf[N]; } ModInt<mod> perm(const std::size_t N, const std::size_t K) const { return N > f.size() or K > N ? ModInt<mod>(0) : f[N] * invf[N - K]; } ModInt<mod> comb(const std::size_t N, const std::size_t K) const { return N > f.size() or K > N ? ModInt<mod>(0) : f[N] * invf[K] * invf[N - K]; } private: std::vector<ModInt<mod>> f, in, invf; }; template <typename F> struct Complex { F x, y; Complex() : x(0), y(0) {} Complex(const F& s) : x(std::cos(s)), y(std::sin(s)) {} Complex(const F x, const F y) : x(x), y(y) {} Complex operator-() const { return Complex(-x, -y); } Complex operator+(const Complex& c) const { return Complex{x + c.x, y + c.y}; } Complex operator-(const Complex& c) const { return Complex{x - c.x, y - c.y}; } Complex operator*(const Complex& c) const { return Complex{x * c.x - y * c.y, x * c.y + y * c.x}; } Complex operator*(const F& r) const { return Complex{x * r, y * r}; } Complex& operator+=(const Complex& c) { return this->x += c.x, this->y += c.y, *this; } Complex& operator-=(const Complex& c) { return this->x -= c.x, this->y -= c.y, *this; } Complex& operator*=(const Complex& c) { return *this = *this * c; } Complex& operator*=(const F& r) { return this->x *= r, this->y *= r, *this; } Complex conj() const { return Complex{x, -y}; } }; //!==================================!// //! 88888888b 88888888b d888888P !// //! 88 88 88 !// //! a88aaaa a88aaaa 88 !// //! 88 88 88 !// //! 88 88 88 !// //! dP dP dP !// //!==================================!// template <typename F = double> class FFT { private: static constexpr std::size_t L = 30; public: FFT() = delete; static void fft(std::vector<Complex<F>>& a, const std::size_t lg, const bool rev) { static std::vector<Complex<F>> root[L]; const std::size_t N = a.size(); assert((1UL << lg) == N); if (root[lg].empty()) { root[lg].reserve(N), root[lg].resize(N); for (std::size_t i = 0; i < N; i++) { root[lg][i] = Complex<F>(PI<F> * F(2 * i) / F(N)); } } std::vector<Complex<F>> tmp(N); for (std::size_t w = (N >> 1); w > 0; w >>= 1) { for (std::size_t y = 0; y < (N >> 1); y += w) { const Complex<F> r = rev ? root[lg][y].conj() : root[lg][y]; for (std::size_t x = 0; x < w; x++) { const auto u = a[y << 1 | x], v = a[y << 1 | x | w] * r; tmp[y | x] = u + v, tmp[y | x | (N >> 1)] = u - v; } } std::swap(tmp, a); } } template <typename T = ll, typename I = int> static std::vector<T> simpleConvolute(const std::vector<I>& a, const std::vector<I>& b) { const std::size_t need = a.size() + b.size() - 1, lg = clog(need), N = 1UL << lg; std::vector<Complex<F>> A(N), B(N); for (std::size_t i = 0; i < a.size(); i++) { A[i] = Complex<F>{F(a[i]), 0}; } for (std::size_t i = 0; i < b.size(); i++) { B[i] = Complex<F>{F(b[i]), 0}; } fft(A, lg, false), fft(B, lg, false); for (std::size_t i = 0; i < N; i++) { A[i] *= B[i] * ((F)1 / (F)N); } fft(A, lg, true); std::vector<T> ans(need); for (std::size_t i = 0; i < need; i++) { ans[i] = T(std::round(A[i].x)); } return ans; } template <typename T = ll, std::size_t K = 2, typename I = int> static std::vector<T> convolute(const std::vector<I>& a, const std::vector<I>& b) { constexpr std::size_t V = 30; constexpr std::size_t S = (V + K - 1) / K; const std::size_t need = a.size() + b.size() - 1, lg = clog(need), N = 1UL << lg; std::vector<Complex<F>> A[K], B[K], tmp(N); for (std::size_t i = 0; i < K; i++) { A[i].reserve(N), A[i].resize(N), B[i].reserve(N), B[i].resize(N); std::fill(tmp.begin() + std::min(a.size(), b.size()), tmp.end(), Complex<F>{}); for (std::size_t j = 0; j < a.size(); j++) { tmp[j].x = F((a[j] >> (S * i)) & ((1 << S) - 1)); } for (std::size_t j = 0; j < b.size(); j++) { tmp[j].y = F((b[j] >> (S * i)) & ((1 << S) - 1)); } fft(tmp, lg, false); for (std::size_t j = 0; j < N; j++) { tmp[j] *= F(0.5); } for (std::size_t j = 0; j < N; j++) { const std::size_t k = j == 0 ? 0UL : N - j; A[i][j] = Complex<F>{tmp[j].x + tmp[k].x, tmp[j].y - tmp[k].y}, B[i][j] = Complex<F>{tmp[j].y + tmp[k].y, -tmp[j].x + tmp[k].x}; } } std::vector<Complex<F>> Z[K]; for (std::size_t i = 0; i < K; i++) { Z[i].reserve(N), Z[i].resize(N); } for (std::size_t a = 0; a < K; a++) { for (std::size_t b = 0; b < K; b++) { for (std::size_t i = 0; i < N; i++) { if (a + b < K) { Z[a + b][i] += A[a][i] * B[b][i]; } else { Z[a + b - K][i] += A[a][i] * B[b][i] * Complex<F>(0, 1); } } } } for (std::size_t i = 0; i < K; i++) { fft(Z[i], lg, true); } std::vector<T> ans(need); T base = 1; for (std::size_t k = 0; k < 2 * K - 1; k++, base *= (1LL << S)) { for (std::size_t i = 0; i < need; i++) { if (k < K) { ans[i] += base * T(std::round(Z[k][i].x / F(N))); } else { ans[i] += base * T(std::round(Z[k - K][i].y / F(N))); } } } return ans; } template <uint mod, std::size_t K = 2> static std::vector<ModInt<mod>> convolute(const std::vector<ModInt<mod>>& a, const std::vector<ModInt<mod>>& b) { constexpr std::size_t V = 30; constexpr std::size_t S = (V + K - 1) / K; const std::size_t need = a.size() + b.size() - 1, lg = clog(need), N = 1UL << lg; std::vector<Complex<F>> A[K], B[K], tmp(N); for (std::size_t i = 0; i < K; i++) { A[i].reserve(N), A[i].resize(N), B[i].reserve(N), B[i].resize(N); std::fill(tmp.begin() + std::min(a.size(), b.size()), tmp.end(), Complex<F>{}); for (std::size_t j = 0; j < a.size(); j++) { tmp[j].x = F((a[j]() >> (S * i)) & ((1 << S) - 1)); } for (std::size_t j = 0; j < b.size(); j++) { tmp[j].y = F((b[j]() >> (S * i)) & ((1 << S) - 1)); } fft(tmp, lg, false); for (std::size_t j = 0; j < N; j++) { tmp[j] *= F(0.5); } for (std::size_t j = 0; j < N; j++) { const std::size_t k = j == 0 ? 0UL : N - j; A[i][j] = Complex<F>{tmp[j].x + tmp[k].x, tmp[j].y - tmp[k].y}, B[i][j] = Complex<F>{tmp[j].y + tmp[k].y, -tmp[j].x + tmp[k].x}; } } std::vector<Complex<F>> Z[K]; for (std::size_t i = 0; i < K; i++) { Z[i].reserve(N), Z[i].resize(N); } for (std::size_t a = 0; a < K; a++) { for (std::size_t b = 0; b < K; b++) { for (std::size_t i = 0; i < N; i++) { if (a + b < K) { Z[a + b][i] += A[a][i] * B[b][i]; } else { Z[a + b - K][i] += A[a][i] * B[b][i] * Complex<F>(0, 1); } } } } for (std::size_t i = 0; i < K; i++) { fft(Z[i], lg, true); } std::vector<ModInt<mod>> ans(need); ModInt<mod> base = 1; for (std::size_t k = 0; k < 2 * K - 1; k++, base *= (1LL << S)) { for (std::size_t i = 0; i < need; i++) { if (k < K) { ans[i] += int((base * ll(std::round(Z[k][i].x / F(N))))()); } else { ans[i] += int((base * ll(std::round(Z[k - K][i].y / F(N))))()); } } } return ans; } }; //!===================================!// //! 888888ba dP !// //! 88 '8b 88 !// //! a88aaaa8P' .d8888b. 88 dP dP !// //! 88 88' '88 88 88 88 !// //! 88 88. .88 88 88. .88 !// //! dP '88888P' dP '8888P88 !// //! .88 !// //! d8888P !// //!===================================!// template <uint mod, uint K = 2> class Poly { public: using mint = ModInt<mod>; Poly<mod> rev(const std::size_t l) const { std::vector<mint> ans = v; ans.resize(l); std::reverse(ans.begin(), ans.end()); return Poly(ans); } Poly() : v(0) {} Poly(const mint& r) : v{r} { shrink(); } Poly(const std::vector<mint>& v) : v{v} { shrink(); } Poly(const std::initializer_list<mint>&& list) : v{list} { shrink(); } std::vector<mint> operator()() const { return v; } mint& operator[](const std::size_t i) { return v[i]; } const mint& operator[](const std::size_t i) const { return v[i]; } mint at(const std::size_t i) const { return i < size() ? v[i] : mint(0); } Poly<mod> operator-() const { std::vector<mint> ans = v; for (auto& e : ans) { e = -e; } return Poly<mod>(ans); } Poly<mod> operator+(const Poly<mod>& p) const { const std::size_t sz = std::max(p.size(), size()); std::vector<mint> ans(sz); for (std::size_t i = 0; i < sz; i++) { ans[i] = at(i) + p.at(i); } return Poly<mod>(ans); } Poly<mod> operator-(const Poly<mod>& p) const { const std::size_t sz = std::max(p.size(), size()); std::vector<mint> ans(sz); for (std::size_t i = 0; i < sz; i++) { ans[i] = at(i) - p.at(i); } return Poly<mod>(ans); } Poly<mod> operator*(const Poly<mod>& p) const { return p.size() == 0 or size() == 0 ? Poly() : Poly(multiply(v, p())); } Poly<mod> operator*(const mint& r) const { std::vector<mint> ans = v; for (auto& e : ans) { e *= r; } return Poly(ans); } Poly<mod> operator/(const mint& r) const { std::vector<mint> ans = v; for (auto& e : ans) { e /= r; } return Poly(ans); } Poly<mod> operator<<(const std::size_t s) const { const std::size_t N = size(); if (N <= s) { return Poly(); } std::vector<mint> ans(N - s); for (std::size_t i = 0; i < N - s; i++) { ans[i] = v[i + s]; } return Poly(ans); } Poly<mod> operator>>(const std::size_t s) const { const std::size_t N = size(); if (N == 0) { return Poly(); } std::vector<mint> ans(N + s); for (std::size_t i = 0; i < N; i++) { ans[i + s] = v[i]; } return Poly(ans); } Poly<mod> operator/(const Poly<mod>& p) const { return div(p); } Poly<mod> operator%(const Poly<mod>& p) const { return rem(p); } Poly<mod>& operator+=(const Poly<mod>& p) { return *this = (*this + p); } Poly<mod>& operator-=(const Poly<mod>& p) { return *this = (*this - p); } Poly<mod>& operator*=(const Poly<mod>& p) { return *this = Poly(multiply(v, p())); } Poly<mod>& operator*=(const mint& r) { for (auto& e : v) { e *= r; } } Poly<mod>& operator/=(const mint& r) { for (auto& e : v) { e /= r; } } Poly<mod>& operator>>=(const std::size_t s) { return *this = (*this >> s); } Poly<mod>& operator<<=(const std::size_t s) { return *this = (*this << s); } Poly<mod>& operator/=(const Poly<mod>& p) { return *this = div(p); } Poly<mod>& operator%=(const Poly<mod>& p) { return *this = rem(p); } Poly<mod> rem(const std::size_t k) const { return size() <= k ? *this : Poly(std::vector<mint>(v.begin(), v.begin() + k)); } Poly<mod> rem(const Poly<mod>& q) const { return *this - div(q) * q; } Poly<mod> rem(const Poly<mod>& q, const Poly<mod>& iq, const std::size_t B) { return *this - q * ((*this * iq) >> (B - 1)); } Poly<mod> inv(const std::size_t k) const { Poly<mod> q(std::vector<mint>(1, mint(1) / v[0])); const auto T = Poly(std::vector<mint>{2}); for (std::size_t i = 1, j = 0; j < k; j++, i *= 2) { q = (q * (T - rem(2 * i) * q)).rem(2 * i); } return q; } template <typename I> Poly<mod> power(const I k) const { using mint = ModInt<mod>; const std::size_t B = size() * 2 - 1; const auto q = pseudoInv(B); Poly<mod> ans(std::vector<mint>{1}); const std::size_t D = log2p1<std::size_t>(k); for (std::size_t i = 0; i < D; i++) { if (k & (1LL << (D - i - 1))) { ans = (ans << 1).rem(*this, q, B); } if (D - i - 1) { ans = (ans * ans).rem(*this, q, B); } } return ans; } std::size_t size() const { return v.size(); } friend std::ostream& operator<<(std::ostream& os, const Poly& p) { if (p.size() == 0) { return os << "0"; } for (std::size_t i = 0; i < p.size(); i++) { os << (i != 0 ? "+" : "") << p[i] << (i != 0 ? i == 1 ? "X" : "X^" + std::to_string(i) : ""); } return os; } private: Poly<mod> div(const Poly<mod>& q) const { assert(q.size() > 0); if (size() < q.size()) { return Poly(); } const std::size_t N = size(); const auto iq = q.pseudoInv(N); return (*this * iq) >> (N - 1); } void shrink() { for (; not v.empty() and v.back() == 0; v.pop_back()) {} } static std::vector<mint> multiply(const std::vector<mint>& a, const std::vector<mint>& b) { return FFT<double>::convolute<mod, K>(a, b); } Poly<mod> pseudoInv(const std::size_t B) const { const std::size_t N = size(); return rev(N).inv(B + 2 > N ? clog(B - N + 2) : 0).rev(B + 1 - N); } std::vector<mint> v; }; //!============================================!// //! 8888ba.88ba oo !// //! 88 '8b '8b !// //! 88 88 88 .d8888b. dP 88d888b. !// //! 88 88 88 88' '88 88 88' '88 !// //! 88 88 88 88. .88 88 88 88 !// //! dP dP dP '88888P8 dP dP dP !// //!============================================!// using mint = ModInt<MOD>; int main() { int N; uint B; std::cin >> N >> B; assert(1 <= N and N <= 200000); assert(1 <= B and B < MOD); std::vector<int> c(N + 1, 0); for (int i = 0; i < N; i++) { int S; std::cin >> S; assert(0 <= S and S < N); c[S]++; } std::vector<int> C = c; for (int i = N - 1; i >= 0; i--) { C[i] += C[i + 1]; } ModComb<MOD> modcomb(N); std::queue<Poly<MOD>> Q; for (int i = 0; i < N; i++) { if (c[N - i - 1] == 0) { continue; } const mint alpha = modcomb.fact(C[N - i - 1]) * modcomb.invFact(C[N - i]) * c[N - i - 1] * modcomb.inv(C[N - i - 1]); const mint beta = modcomb.fact(C[N - i - 1]) * modcomb.invFact(C[N - i]) * C[N - i] * modcomb.inv(C[N - i - 1]); Q.push({beta, alpha}); } while (Q.size() > 1) { const auto f1 = Q.front(); Q.pop(); const auto f2 = Q.front(); Q.pop(); Q.push(f1 * f2); } const auto P = Q.front(); mint ans = 0; mint base = 1; for (int i = 0; i <= N; i++, base *= B) { ans += i * base * P.at(i); } std::cout << ans << std::endl; return 0; }