結果
問題 | No.807 umg tours |
ユーザー | Kutimoti_T |
提出日時 | 2019-04-29 09:22:25 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 655 ms / 4,000 ms |
コード長 | 28,122 bytes |
コンパイル時間 | 13,839 ms |
コンパイル使用メモリ | 379,244 KB |
実行使用メモリ | 85,848 KB |
最終ジャッジ日時 | 2024-11-23 19:29:01 |
合計ジャッジ時間 | 21,693 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
12,928 KB |
testcase_01 | AC | 10 ms
13,056 KB |
testcase_02 | AC | 10 ms
13,056 KB |
testcase_03 | AC | 10 ms
13,056 KB |
testcase_04 | AC | 10 ms
12,928 KB |
testcase_05 | AC | 10 ms
13,056 KB |
testcase_06 | AC | 10 ms
13,184 KB |
testcase_07 | AC | 10 ms
13,056 KB |
testcase_08 | AC | 10 ms
12,800 KB |
testcase_09 | AC | 10 ms
12,928 KB |
testcase_10 | AC | 10 ms
12,928 KB |
testcase_11 | AC | 360 ms
69,968 KB |
testcase_12 | AC | 366 ms
53,208 KB |
testcase_13 | AC | 484 ms
70,624 KB |
testcase_14 | AC | 201 ms
38,608 KB |
testcase_15 | AC | 166 ms
32,740 KB |
testcase_16 | AC | 523 ms
75,144 KB |
testcase_17 | AC | 655 ms
85,848 KB |
testcase_18 | AC | 645 ms
83,152 KB |
testcase_19 | AC | 652 ms
81,644 KB |
testcase_20 | AC | 392 ms
46,488 KB |
testcase_21 | AC | 403 ms
47,700 KB |
testcase_22 | AC | 163 ms
28,352 KB |
testcase_23 | AC | 129 ms
24,704 KB |
testcase_24 | AC | 296 ms
65,996 KB |
testcase_25 | AC | 616 ms
84,852 KB |
ソースコード
pub trait Zero { fn zero() -> Self; } impl Zero for usize { fn zero() -> Self { 0 } } impl Zero for u64 { fn zero() -> Self { 0 } } impl Zero for u32 { fn zero() -> Self { 0 } } impl Zero for u16 { fn zero() -> Self { 0 } } impl Zero for u8 { fn zero() -> Self { 0 } } impl Zero for isize { fn zero() -> Self { 0 } } impl Zero for i64 { fn zero() -> Self { 0 } } impl Zero for i32 { fn zero() -> Self { 0 } } impl Zero for i16 { fn zero() -> Self { 0 } } impl Zero for i8 { fn zero() -> Self { 0 } } pub trait IsNN {} impl IsNN for usize {} impl IsNN for u64 {} impl IsNN for u32 {} impl IsNN for u16 {} impl IsNN for u8 {} pub trait IsNum: ToNNeg + ToArb { } impl<N: ToNNeg + ToArb> IsNum for N { } pub trait ToNNeg { type Output: Zero + IsNum + IsNN + std::ops::Add<Output=Self::Output> + std::ops::Sub<Output=Self::Output> + std::cmp::Ord + Copy; fn to_nneg(&self) -> Self::Output; } impl ToNNeg for usize { type Output = usize; fn to_nneg(&self) -> Self::Output { self.clone() } } impl ToNNeg for u64 { type Output = u64; fn to_nneg(&self) -> Self::Output { self.clone() } } impl ToNNeg for u32 { type Output = u32; fn to_nneg(&self) -> Self::Output { self.clone() } } impl ToNNeg for u16 { type Output = u16; fn to_nneg(&self) -> Self::Output { self.clone() } } impl ToNNeg for u8 { type Output = u8; fn to_nneg(&self) -> Self::Output { self.clone() } } impl ToNNeg for isize { type Output = usize; fn to_nneg(&self) -> Self::Output { match self.clone() { num if num >= 0 => num as Self::Output, _ => unreachable!() } } } impl ToNNeg for i64 { type Output = u64; fn to_nneg(&self) -> Self::Output { match self.clone() { num if num >= 0 => num as Self::Output, _ => unreachable!() } } } impl ToNNeg for i32 { type Output = u32; fn to_nneg(&self) -> Self::Output { match self.clone() { num if num >= 0 => num as Self::Output, _ => unreachable!() } } } impl ToNNeg for i16 { type Output = u16; fn to_nneg(&self) -> Self::Output { match self.clone() { num if num >= 0 => num as Self::Output, _ => unreachable!() } } } impl ToNNeg for i8 { type Output = u8; fn to_nneg(&self) -> Self::Output { match self.clone() { num if num >= 0 => num as Self::Output, _ => unreachable!() } } } pub trait ToArb { type Output: Zero + IsNum + std::ops::Add<Output=Self::Output> + std::ops::Sub<Output=Self::Output> + std::cmp::Ord + Copy; fn to_arb(&self) -> Self::Output; } impl ToArb for isize { type Output = isize; fn to_arb(&self) -> Self::Output { self.clone() } } impl ToArb for i64 { type Output = i64; fn to_arb(&self) -> Self::Output { self.clone() } } impl ToArb for i32 { type Output = i32; fn to_arb(&self) -> Self::Output { self.clone() } } impl ToArb for i16 { type Output = i16; fn to_arb(&self) -> Self::Output { self.clone() } } impl ToArb for i8 { type Output = i8; fn to_arb(&self) -> Self::Output { self.clone() } } impl ToArb for usize { type Output = isize; fn to_arb(&self) -> Self::Output { self.clone() as isize } } impl ToArb for u64 { type Output = i64; fn to_arb(&self) -> Self::Output { self.clone() as i64 } } impl ToArb for u32 { type Output = i32; fn to_arb(&self) -> Self::Output { self.clone() as i32 } } impl ToArb for u16 { type Output = i16; fn to_arb(&self) -> Self::Output { self.clone() as i16 } } impl ToArb for u8 { type Output = i8; fn to_arb(&self) -> Self::Output { self.clone() as i8 } } pub trait Integer: Sized + std::ops::Shl<usize, Output=Self> + std::ops::Shr<usize, Output=Self> {} impl Integer for usize {} impl Integer for u64 {} impl Integer for u32 {} impl Integer for u16 {} impl Integer for u8 {} impl Integer for isize {} impl Integer for i64 {} impl Integer for i32 {} impl Integer for i16 {} impl Integer for i8 {} /// Trait for properties. pub trait Property: Copy {} impl<P> Property for P where P: Copy {} /// Types implementing `ToNNegWeight` are able to convert to non-negative weights. /// This trait use the algorithms with potentials (`dijkstra_with_potential`, etc...). pub trait ToNNegWeight { /// converting type. type Output: NNegWeight; /// convert to non-negative weights. fn to_nnegw(&self) -> Self::Output; } /// Types implementing `ToARbWeight` are able to convert to arbitrary weights. /// This trait use to reverse from non-negative weight after converting weight. pub trait ToArbWeight { /// converting type. type Output: ArbWeight; /// convert to non-negative weights. fn to_arbw(&self) -> Self::Output; } /// Trait of arbitrary weights. /// the arbirary weight has infinity, zero and negative infinity. pub trait ArbWeight where Self: ToNNegWeight + ToArbWeight + Property + std::ops::Add<Output=Self> + std::cmp::Ord { fn inf() -> Self; fn zero() -> Self; fn neg_inf() -> Self { unreachable!() } } /// Trait of non-negative weights. pub trait NNegWeight where Self: ArbWeight {} /// Trait of weights of integer. /// types implementing this use the scaling algorithms. pub trait IntegerWeight: ArbWeight + std::ops::Shl<usize, Output=Self> + std::ops::Shr<usize, Output=Self> {} impl<W> IntegerWeight for W where W: ArbWeight + std::ops::Shl<usize, Output=Self> + std::ops::Shr<usize, Output=Self> {} pub trait SubtractableWeight: ArbWeight + std::ops::Sub<Output=Self> {} impl<W> SubtractableWeight for W where W: ArbWeight + std::ops::Sub<Output=Self> {} /// Trait of capacity for maxflow, mcf, and so on. pub trait Capacity: ArbWeight + IntegerWeight + SubtractableWeight {} impl<W> Capacity for W where W: ArbWeight + IntegerWeight + SubtractableWeight {} pub trait Cost<Cap>: ArbWeight + SubtractableWeight + std::ops::Mul<Cap, Output=Self> {} impl<Co, Cap> Cost<Cap> for Co where Cap: Capacity, Co: ArbWeight + SubtractableWeight + SubtractableWeight + std::ops::Mul<Cap, Output=Self> {} /// Trait for elements of graph (Vertex, Edge, ...) that have ID (usize). /// the elements implementing ID are able to use [`graph::kernel::Properties`]. pub trait ID { /// return id of the element. fn id(&self) -> usize; } /// Implementing ID for usize. impl ID for usize { /// return the own value fn id(&self) -> usize { *self } } /// Trait for vertices of graphs. pub trait Vertex: ID + Eq + Copy { } impl<V: ID + Eq + Copy> Vertex for V { } /// Trait for edges of graphs. pub trait Edge { /// Vertex type at both ends of edge type VType: Vertex; /// Start point of edge fn from(&self) -> &Self::VType; /// End point of edge fn to(&self) -> &Self::VType; } /// Implementing Edge for the simple tuple. impl<V> Edge for (V, V) where V: Vertex { type VType = V; fn from(&self) -> &Self::VType { &self.0 } fn to(&self) -> &Self::VType { &self.1 } } /// Implementing Edge for the simple tuple. impl<V, P> Edge for (V, V, P) where V: Vertex, P: Property { type VType = V; fn from(&self) -> &Self::VType { &self.0 } fn to(&self) -> &Self::VType { &self.1 } } /// Trait for adjacency edges of graph. /// Why do we use [`Edge`] as is? There are 2 reasons. /// - To give values to the edges to use Properties (AdjEdge has ID). /// - When using a undirected graph as a directed graph, must swap two ends of edge. pub trait AdjEdge: ID + Edge { /// Edge type of raw edge. type EType: Edge<VType=Self::VType>; /// return raw edge. fn edge(&self) -> &Self::EType; } /// Trait for adjcency edges on ResidualNetwork. /// It has reverse edge. pub trait ResidualEdge: AdjEdge { fn rev(&self) -> Self; } /// Trait of graph. pub trait Graph<'a> { /// Type of vertices. type VType: Vertex + 'a; /// Type of edges. type EType: Edge<VType=Self::VType>; /// Type of adjacency edges. type AEType: AdjEdge<VType=Self::VType, EType=Self::EType>; /// Type of iterator for adjacency list. type AdjIter: std::iter::Iterator<Item=Self::AEType>; /// Type of iterator for edges list. type EIter: std::iter::Iterator<Item=Self::AEType>; /// Type of iterator for vertices list. type VIter: std::iter::Iterator<Item=&'a Self::VType>; /// return adjacency list from the vertex v. fn delta(&'a self, v: &Self::VType) -> Self::AdjIter; /// return edges list. fn edges(&'a self) -> Self::EIter; /// return vertices list. fn vertices(&'a self) -> Self::VIter; /// return the number of vertices. fn v_size(&self) -> usize; /// return the number of edges. fn e_size(&self) -> usize; } /// Trait of directed graph. pub trait Directed<'a>: Graph<'a> {} /// Trait of undirected graph. /// graphs implementing this hold that the edge `(v, u)` exists for the edge `(u, v)` when the graph /// use as directed graph pub trait Undirected<'a>: Graph<'a> {} /// Trait of bipartite graph. pub trait Bipartite<'a>: Undirected<'a> { /// Type of iterator for vertices in one side. type BVIter: std::iter::Iterator<Item=&'a Self::VType>; /// return vertices list in left side. fn left_vertices(&'a self) -> Self::BVIter; /// return vertices list in right side. fn right_vertices(&'a self) -> Self::BVIter; } /// Trait of residual network /// `AEType` must be `ResidualEdge`. pub trait Residual<'a>: Directed<'a> where <Self as Graph<'a>>::AEType: ResidualEdge {} pub fn generate_func<AE, P, F>(f: F) -> impl Fn(&AE) -> P where AE: AdjEdge, P: Property, F: Fn(&AE::EType) -> P { move |ae| f(ae.edge()) } use std::ops::{ Index, IndexMut }; #[derive(Clone)] pub struct Properties<W: Clone> { vec: Vec<W> } impl<'a, I: ID, W: Clone> Index<&'a I> for Properties<W> { type Output = W; fn index(&self, idx: &'a I) -> & Self::Output { &self.vec[idx.id()] } } impl<'a, I: ID, W: Clone> IndexMut<&'a I> for Properties<W> { fn index_mut(&mut self, idx: &'a I) -> &mut Self::Output { &mut self.vec[idx.id()] } } impl<'a, W: Clone> Properties<W> { pub fn new(n: usize, init: &W) -> Self { Properties { vec: vec![init.clone(); n], } } pub fn iter(&'a self) -> std::slice::Iter<'a, W> { self.vec.iter() } } #[derive(Clone, Copy, PartialEq, Eq)] pub enum ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { Inf, Some(W), NegInf, } impl<W> std::ops::Add for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn add(self, rhs: Self) -> Self { match self { ArbW::Inf => { match rhs { ArbW::NegInf => unreachable!(), _ => ArbW::Inf, } } ArbW::Some(d) => { match rhs { ArbW::Inf => ArbW::Inf, ArbW::Some(d2) => ArbW::Some(d + d2), ArbW::NegInf => ArbW::NegInf, } } ArbW::NegInf => { match rhs { ArbW::Inf => unreachable!(), _ => ArbW::NegInf, } } } } } impl<W> std::ops::Sub for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::ops::Sub<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn sub(self, rhs: Self) -> Self { match self { ArbW::Inf => { match rhs { ArbW::Inf => unreachable!(), _ => ArbW::Inf, } } ArbW::Some(d) => { match rhs { ArbW::Inf => ArbW::NegInf, ArbW::Some(d2) => ArbW::Some(d - d2), ArbW::NegInf => ArbW::Inf, } } ArbW::NegInf => { match rhs { ArbW::NegInf => unreachable!(), _ => ArbW::NegInf, } } } } } impl<W,X> std::ops::Mul<ArbW<X>> for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy + std::ops::Mul<Output=W>, X: Zero + IsNum + std::ops::Add<Output=X> + std::cmp::Ord + Copy + Into<W> { type Output = Self; fn mul(self, rhs: ArbW<X>) -> Self { match self { ArbW::Inf => { match rhs { ArbW::NegInf => ArbW::NegInf, _ => ArbW::Inf, } } ArbW::Some(d) => { match rhs { ArbW::Inf => ArbW::Inf, ArbW::Some(d2) => ArbW::Some(d.mul(d2.into())), ArbW::NegInf => ArbW::NegInf, } } ArbW::NegInf => { match rhs { ArbW::NegInf => ArbW::Inf, _ => ArbW::NegInf, } } } } } impl<W,X> std::ops::Mul<NNegW<X>> for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy + std::ops::Mul<Output=W>, X: Zero + IsNum + IsNN + std::ops::Add<Output=X> + std::cmp::Ord + Copy + Into<W> { type Output = Self; fn mul(self, rhs: NNegW<X>) -> Self { match self { ArbW::Inf => { ArbW::Inf } ArbW::Some(d) => { match rhs { NNegW::Inf => ArbW::Inf, NNegW::Some(d2) => ArbW::Some(d.mul(d2.into())), } } ArbW::NegInf => { ArbW::NegInf } } } } impl<W> std::cmp::PartialOrd for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { fn partial_cmp(&self, rhs: &Self) -> Option<std::cmp::Ordering> { Some(self.cmp(rhs)) } } impl<W> std::cmp::Ord for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { fn cmp(&self, rhs: &Self) -> std::cmp::Ordering { match self { ArbW::Inf => { match rhs { ArbW::Inf => std::cmp::Ordering::Equal, _ => std::cmp::Ordering::Greater, } } ArbW::Some(d) => { match rhs { ArbW::Inf => std::cmp::Ordering::Less, ArbW::Some(d2) => d.cmp(d2), ArbW::NegInf => std::cmp::Ordering::Greater, } } ArbW::NegInf => { match rhs { ArbW::NegInf => std::cmp::Ordering::Equal, _ => std::cmp::Ordering::Less, } } } } } impl<W> ToNNegWeight for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = NNegW<<W as ToNNeg>::Output>; fn to_nnegw(&self) -> Self::Output { match self { ArbW::Inf => NNegW::Inf, ArbW::Some(ref num) => NNegW::Some(num.to_nneg()), ArbW::NegInf => unreachable!(), } } } impl<W> ToArbWeight for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn to_arbw(&self) -> Self::Output { self.clone() } } impl<W> std::ops::Shl<usize> for ArbW<W> where W: Zero + IsNum + Integer + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn shl(self, rhs: usize) -> Self { match self { ArbW::Some(d) => ArbW::Some(d.shl(rhs)), inf => inf, } } } impl<W> std::ops::Shr<usize> for ArbW<W> where W: Zero + IsNum + Integer + std::ops::Add<Output=W> + std::cmp::Ord + Copy + std::ops::Shr<usize, Output=W> { type Output = Self; fn shr(self, rhs: usize) -> Self { match self { ArbW::Some(d) => ArbW::Some(d.shr(rhs)), inf => inf, } } } impl<W> ArbWeight for ArbW<W> where W: Zero + IsNum + std::ops::Add<Output=W> + std::cmp::Ord + Copy { fn inf() -> Self { ArbW::Inf } fn zero() -> Self { ArbW::Some(W::zero()) } fn neg_inf() -> Self { ArbW::NegInf } } #[derive(Clone, Copy, PartialEq, Eq)] pub enum NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { Inf, Some(W), } impl<W> std::ops::Add for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn add(self, rhs: Self) -> Self { match self { NNegW::Inf => { NNegW::Inf } NNegW::Some(d) => { match rhs { NNegW::Inf => NNegW::Inf, NNegW::Some(d2) => NNegW::Some(d + d2), } } } } } impl<W> std::ops::Sub for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::ops::Sub<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn sub(self, rhs: Self) -> Self { match self { NNegW::Inf => { match rhs { NNegW::Inf => unreachable!(), _ => NNegW::Inf, } } NNegW::Some(d) => { match rhs { NNegW::Inf => unreachable!(), NNegW::Some(d2) => NNegW::Some(d - d2), } } } } } impl<W> std::cmp::PartialOrd for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { fn partial_cmp(&self, rhs: &Self) -> Option<std::cmp::Ordering> { Some(self.cmp(rhs)) } } impl<W> std::cmp::Ord for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { fn cmp(&self, rhs: &Self) -> std::cmp::Ordering { match self { NNegW::Inf => { match rhs { NNegW::Inf => std::cmp::Ordering::Equal, _ => std::cmp::Ordering::Greater, } } NNegW::Some(d) => { match rhs { NNegW::Inf => std::cmp::Ordering::Less, NNegW::Some(d2) => d.cmp(d2), } } } } } impl<W> IsNN for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy {} impl<W> ToNNegWeight for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn to_nnegw(&self) -> Self::Output { self.clone() } } impl<W> ToArbWeight for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = ArbW<<W as ToArb>::Output>; fn to_arbw(&self) -> Self::Output { match self { NNegW::Inf => ArbW::Inf, NNegW::Some(ref num) => ArbW::Some(num.to_arb()) } } } impl<W> std::ops::Shl<usize> for NNegW<W> where W: Zero + IsNum + IsNN + Integer + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn shl(self, rhs: usize) -> Self { match self { NNegW::Some(d) => NNegW::Some(d.shl(rhs)), other => other, } } } impl<W> std::ops::Shr<usize> for NNegW<W> where W: Zero + IsNum + IsNN + Integer + std::ops::Add<Output=W> + std::cmp::Ord + Copy { type Output = Self; fn shr(self, rhs: usize) -> Self { match self { NNegW::Some(d) => NNegW::Some(d.shr(rhs)), other => other, } } } impl<W> ArbWeight for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy { fn inf() -> Self { NNegW::Inf } fn zero() -> Self { NNegW::Some(W::zero()) } } impl<W> NNegWeight for NNegW<W> where W: Zero + IsNum + IsNN + std::ops::Add<Output=W> + std::cmp::Ord + Copy {} #[derive(Clone,Copy,Eq,PartialEq,Debug)] pub struct Eite(pub usize); pub struct DiAdjEdge<'a, E: Edge + 'a>(&'a E, usize); impl<'a, E: Edge + 'a> ID for DiAdjEdge<'a, E> { fn id(&self) -> usize { self.1 } } impl<'a, E> Edge for DiAdjEdge<'a, E> where E: Edge + 'a { type VType = E::VType; fn from(&self) -> &E::VType { self.0.from() } fn to(&self) -> &E::VType { self.0.to() } } impl<'a, E> AdjEdge for DiAdjEdge<'a, E> where E: Edge + 'a { type EType = E; fn edge(&self) -> &E { self.0 } } pub struct AdjIter<'a, E: Edge + 'a> { iter: std::slice::Iter<'a, Eite>, edges: &'a Vec<E>, } impl<'a, E: Edge + 'a> std::iter::Iterator for AdjIter<'a, E> { type Item = DiAdjEdge<'a, E>; fn next(&mut self) -> Option<Self::Item> { match self.iter.next() { Some(ei) => { Some( DiAdjEdge(&self.edges[ei.0], ei.0) ) } None => { None } } } } pub struct EIter<'a, E: Edge + 'a> { i: usize, iter: std::slice::Iter<'a, E>, } impl<'a, E: Edge + 'a> std::iter::Iterator for EIter<'a, E> { type Item = DiAdjEdge<'a, E>; fn next(&mut self) -> Option<Self::Item> { match self.iter.next() { Some(e) => { let i = self.i; self.i += 1; Some(DiAdjEdge(&e, i)) } None => None } } } pub struct VIter<'a, V: Vertex + 'a> { iter: std::slice:: Iter<'a, Option<V>>, } impl<'a, V: Vertex + 'a> std::iter::Iterator for VIter<'a, V> { type Item = &'a V; fn next(&mut self) -> Option<Self::Item> { while let Some(v) = self.iter.next() { if v.is_none() { continue; } else { return v.as_ref() } } None } } pub struct DirectedGraph<V: Vertex, E: Edge<VType=V>> { n: usize, m: usize, g: Vec<Vec<Eite>>, es: Vec<E>, vs: Vec<Option<V>>, } impl<'a, V, E> Graph<'a> for DirectedGraph<V,E> where V: Vertex + 'a, E: Edge<VType=V> + 'a { type VType = V; type EType = E; type AEType = DiAdjEdge<'a, E>; type AdjIter = AdjIter<'a, E>; type EIter = EIter<'a, E>; type VIter = VIter<'a, V>; fn delta(&'a self, v: &V) -> Self::AdjIter { AdjIter { iter: self.g[v.id()].iter(), edges: &self.es } } fn edges(&'a self) -> Self::EIter { EIter { i: 0, iter: self.es.iter() } } fn vertices(&'a self) -> Self::VIter { VIter { iter: self.vs.iter() } } fn v_size(&self) -> usize { self.n } fn e_size(&self) -> usize { self.m } } impl<V: Vertex, E: Edge<VType=V>> DirectedGraph<V,E> { pub fn new(n: usize) -> Self { DirectedGraph { n: n, m: 0, g: vec![Vec::<Eite>::new(); n], es: Vec::new(), vs: vec![None; n], } } fn vertex_regist(&mut self, v: V) { let i = v.id(); self.vs[i] = match self.vs[v.id()].take() { Some(vv) => { assert!(vv.id() == v.id()); Some(vv) } None => { Some(v) } } } pub fn add_edge(&mut self, e: E) { let ei = Eite(self.m); self.m += 1; self.g[e.from().id()].push(ei); self.vertex_regist(e.from().clone()); self.vertex_regist(e.to().clone()); self.es.push(e); } } impl<'a, V, E> Directed<'a> for DirectedGraph<V, E> where V: Vertex + 'a, E: Edge<VType=V> + 'a {} pub fn bsr64(x: u64) -> usize { if x == 0 { 0 } else { let mut t = 16usize; for i in (0..=4).rev() { if x & !((1u64 << t) - 1) != 0 { t += 1usize << i; } else { t -= 1usize << i; } } if x & !((1u64 << t) - 1) != 0 { t += 1; } t } } pub struct RadixHeap64<T> { v: Vec<Vec<(u64, T)>>, last: u64, size: usize, } impl<T> RadixHeap64<T> { pub fn new() -> Self { let mut temp = Vec::new(); for _ in 0..65 { temp.push(Vec::new()); } RadixHeap64 { v: temp, last: 0, size: 0 } } pub fn pop(&mut self) -> Option<(u64, T)> { if self.is_empty() { None } else { self.size -= 1; if self.v[0].is_empty() { let mut i = 1; while self.v[i].is_empty() { i += 1; } self.last = u64::max_value(); for d in self.v[i].iter() { self.last = std::cmp::min(self.last, d.0.clone()); } for d in std::mem::replace(&mut self.v[i], Vec::new()) { self.v[bsr64(self.last ^ d.0)].push(d); } } self.v[0].pop() } } pub fn push(&mut self, x: (u64, T)) { assert!(self.last <= x.0); self.size += 1; self.v[bsr64(self.last ^ x.0)].push(x); } pub fn is_empty(&self) -> bool { self.size == 0 } pub fn size(&self) -> usize { self.size } } pub fn dijkstra_with_radix64<'a, G, F>(g: &'a G, s: &G::VType, cost: F) -> Properties<NNegW<u64>> where G: Graph<'a>, F: Fn(&G::AEType) -> NNegW<u64> { type W = NNegW<u64>; let n = g.v_size(); let mut dist = Properties::new(n, &W::inf()); dist[s] = W::zero(); let mut heap = RadixHeap64::new(); heap.push((match dist[s] { NNegW::Some(raw) => raw, _ => unreachable!()}, s.clone())); while let Some((raw, ref v)) = heap.pop() { if dist[v] < NNegW::Some(raw) { continue } for ref e in g.delta(v) { if dist[e.from()] + cost(e) < dist[e.to()] { dist[e.to()] = dist[e.from()] + cost(e); heap.push((match dist[e.to()] { NNegW::Some(raw) => raw, _ => unreachable!()}, e.to().clone())); } } } dist } #[test] fn dijkstra_test() { use graph::graph::DirectedGraph; use graph::property::NNegW; let mut g = DirectedGraph::new(4); g.add_edge((0usize, 1usize, 1u64)); g.add_edge((0, 2, 4)); g.add_edge((2, 0, 1)); g.add_edge((1, 2, 2)); g.add_edge((3, 1, 1)); g.add_edge((3, 2, 5)); let dist = dijkstra_with_radix64(&g, &1, |e| NNegW::Some(e.edge().2)); assert!(dist[&0] == NNegW::Some(3)); assert!(dist[&1] == NNegW::Some(0)); assert!(dist[&2] == NNegW::Some(2)); assert!(dist[&3] == NNegW::Inf); } #[derive(Clone, PartialEq, Eq, Copy)] enum VIP { Yet, Used, } #[derive(Clone, PartialEq, Eq, Copy)] struct Ver(usize, VIP); impl ID for Ver { fn id(&self) -> usize { self.0 + match self.1 { VIP::Yet => 0, VIP::Used => 100000, } } } fn main() { let mut s = String::new(); std::io::stdin().read_line(&mut s).unwrap(); let v:Vec<usize> = s.trim().split_whitespace() .map(|e|e.parse().unwrap()).collect(); let (n, m) = (v[0] , v[1]); let mut g = DirectedGraph::new(200000); for _ in 0..m{ let mut t = String::new(); std::io::stdin().read_line(&mut t).unwrap(); let x:Vec<usize> = t.trim().split_whitespace() .map(|e|e.parse().unwrap()).collect(); let (v, u, d) = (x[0] - 1, x[1] - 1, x[2] as u64); g.add_edge((Ver(v, VIP::Yet), Ver(u, VIP::Yet), d)); g.add_edge((Ver(v, VIP::Used), Ver(u, VIP::Used), d)); g.add_edge((Ver(v, VIP::Yet), Ver(u, VIP::Used), 0)); g.add_edge((Ver(u, VIP::Yet), Ver(v, VIP::Yet), d)); g.add_edge((Ver(u, VIP::Used), Ver(v, VIP::Used), d)); g.add_edge((Ver(u, VIP::Yet), Ver(v, VIP::Used), 0)); } g.add_edge((Ver(0, VIP::Yet), Ver(0, VIP::Used), 0)); let res = dijkstra_with_radix64(&g, &Ver(0, VIP::Yet), |ep| NNegW::Some(ep.edge().2)); for i in 0..n { let ans = res[&Ver(i, VIP::Yet)] + res[&Ver(i, VIP::Used)]; if let NNegW::Some(d) = ans { println!("{}", d); } } }