結果
| 問題 |
No.658 テトラナッチ数列 Hard
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-05-02 23:24:14 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 442 ms / 2,000 ms |
| コード長 | 13,733 bytes |
| コンパイル時間 | 1,791 ms |
| コンパイル使用メモリ | 178,308 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-31 13:51:36 |
| 合計ジャッジ時間 | 4,599 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 8 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
//#define int long long
//TEMPLATE START---------------8<---------------8<---------------8<---------------8<---------------//
typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> vi; typedef vector<ll> vl;
typedef vector<string> vst; typedef vector<bool> vb; typedef vector<ld> vld; typedef vector<pii> vpii; typedef vector<pll> vpll; typedef vector<vector<int> > vvi;
const int INF = (0x7FFFFFFFL); const ll INFF = (0x7FFFFFFFFFFFFFFFL); const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const int MOD = 1e9 + 7; const int MODD = 998244353; const string alphabet = "abcdefghijklmnopqrstuvwxyz";
const double PI = acos(-1.0); const double EPS = 1e-9; const string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
int dx[9] = { 1, 0, -1, 0, 1, -1, -1, 1, 0 };
int dy[9] = { 0, 1, 0, -1, -1, -1, 1, 1, 0 };
#define ln '\n'
#define scnaf scanf
#define sacnf scanf
#define sancf scanf
#define SS(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__);
template<typename T> void MACRO_VAR_Scan(T& t){cin >> t;}template<typename First, typename...Rest> void MACRO_VAR_Scan(First& first, Rest&...rest){cin >> first;MACRO_VAR_Scan(rest...);}
#define SV(type,c,n) vector<type> c(n);for(auto& i:c)cin >> i;
#define SVV(type,c,n,m) vector<vector<type>> c(n,vector<type>(m));for(auto& r:c)for(auto& i:r)cin >> i;
template<class T,class U>ostream &operator<<(ostream &o,const pair<T,U>&j){o<<"{"<<j.first<<", "<<j.second<<"}";return o;}
template<class T,class U>ostream &operator<<(ostream &o,const map<T,U>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
template<class T>ostream &operator<<(ostream &o,const set<T>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
template<class T>ostream &operator<<(ostream &o,const vector<T>&j){o<<"{";for(int i=0;i<(int)j.size();++i)o<<(i>0?", ":"")<<j[i];o<<"}";return o;}
inline int print(void){cout << endl; return 0;}
template<class Head> int print(Head&& head){cout << head;print();return 0;} template<class Head,class... Tail> int print(Head&& head,Tail&&... tail){cout<<head<<" ";print(forward<Tail>(tail)...);return 0;}
inline int debug(void){cerr << endl; return 0;}
template<class Head> int debug(Head&& head){cerr << head;debug();return 0;} template<class Head,class... Tail> int debug(Head&& head,Tail&&... tail){cerr<<head<<" ";debug(forward<Tail>(tail)...);return 0;}
template<typename T> void PA(T &a){int ASIZE=sizeof(a)/sizeof(a[0]);for(int ii=0;ii<ASIZE;++ii){cout<<a[ii]<<" \n"[ii==ASIZE-1];}}
template<typename T> void PV(T &v){int VSIZE=v.size();for(int ii=0;ii<VSIZE;++ii){cout<<v[ii]<<" \n"[ii==VSIZE-1];}}
#define ER(x) cerr << #x << " = " << (x) << endl;
#define ERV(v) {cerr << #v << " : ";for(const auto& xxx : v){cerr << xxx << " ";}cerr << "\n";}
inline int YES(bool x){cout<<((x)?"YES":"NO")<<endl;return 0;} inline int Yes(bool x){cout<<((x)?"Yes":"No")<<endl;return 0;} inline int yes(bool x){cout<<((x)?"yes":"no")<<endl;return 0;}
inline int yES(bool x){cout<<((x)?"yES":"nO")<<endl;return 0;} inline int Yay(bool x){cout<<((x)?"Yay!":":(")<<endl;return 0;}
template<typename A,typename B> void sankou(bool x,A a,B b){cout<<((x)?(a):(b))<<endl;}
#define _overload3(_1,_2,_3,name,...) name
#define _REP(i,n) REPI(i,0,n)
#define REPI(i,a,b) for(ll i=ll(a);i<ll(b);++i)
#define REP(...) _overload3(__VA_ARGS__,REPI,_REP,)(__VA_ARGS__)
#define _RREP(i,n) RREPI(i,n,0)
#define RREPI(i,a,b) for(ll i=ll(a);i>=ll(b);--i)
#define RREP(...) _overload3(__VA_ARGS__,RREPI,_RREP,)(__VA_ARGS__)
#define EACH(e,v) for(auto& e : v)
#define PERM(v) sort((v).begin(),(v).end());for(bool c##p=1;c##p;c##p=next_permutation((v).begin(),(v).end()))
#define ADD(a,b) a=(a+ll(b))%MOD
#define MUL(a,b) a=(a*ll(b))%MOD
inline ll MOP(ll x,ll n,ll m=MOD){ll r=1;while(n>0){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}inline ll lcm(ll a,ll b){return a*b/gcd(a,b);}inline ll POW(ll a,ll b){ll c=1ll;do{if(b&1)c*=1ll*a;a*=1ll*a;}while(b>>=1);return c;}
template<typename T,typename A,typename B> inline bool between(T x,A a,B b) {return ((a<=x)&&(x<b));}template<class T> inline T sqr(T x){return x*x;}
template<typename A,typename B> inline bool chmax(A &a,const B &b){if(a<b){a=b;return 1;}return 0;}
template<typename A,typename B> inline bool chmin(A &a,const B &b){if(a>b){a=b;return 1;}return 0;}
#define tmax(x,y,z) max((x),max((y),(z)))
#define tmin(x,y,z) min((x),min((y),(z)))
#define PB push_back
#define MP make_pair
#define MT make_tuple
#define all(v) (v).begin(),(v).end()
#define rall(v) (v).rbegin(),(v).rend()
#define SORT(v) sort((v).begin(),(v).end())
#define RSORT(v) sort((v).rbegin(),(v).rend())
#define EXIST(s,e) (find((s).begin(),(s).end(),(e))!=(s).end())
#define EXISTST(s,c) (((s).find(c))!=string::npos)
#define POSL(x,val) (lower_bound(x.begin(),x.end(),val)-x.begin())
#define POSU(x,val) (upper_bound(x.begin(),x.end(),val)-x.begin())
#define GEQ(x,val) (int)(x).size() - POSL((x),(val))
#define GREATER(x,val) (int)(x).size() - POSU((x),(val))
#define LEQ(x,val) POSU((x),(val))
#define LESS(x,val) POSL((x),(val))
#define SZV(a) int((a).size())
#define SZA(a) sizeof(a)/sizeof(a[0])
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define MEMINF(a) memset(a,0x3f,sizeof(a))
#define FILL(a,b) memset(a,b,sizeof(a))
#define UNIQUE(v) sort((v).begin(),(v).end());(v).erase(unique((v).begin(),(v).end()),(v).end())
struct abracadabra{
abracadabra(){
cin.tie(0); ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
cerr << fixed << setprecision(5);
};
} ABRACADABRA;
//TEMPLATE END---------------8<---------------8<---------------8<---------------8<---------------//
/*
・ModInt
[備考] Mod演算のための構造体
[使用例]
modint M; // 剰余系MOD(1e9+7)における演算ができる
ModInt<mod> N; // 剰余系modにおける演算ができる
*/
template< int MODULO > struct ModInt {
using uint32 = uint_fast32_t;
using uint64 = uint_fast64_t;
uint64 x; ModInt() : x(0) {}
ModInt(uint64 y) : x(set(y % MODULO + MODULO)) {}
static uint64 set(const uint64 &y) { return (y < MODULO) ? y : y - MODULO; }
static ModInt make(const uint64 &y) { ModInt ret = y; return ret; }
ModInt operator+(const ModInt &m) const { return make(set(x + m.x)); }
ModInt operator-(const ModInt &m) const { return make(set(x + MODULO - m.x)); }
ModInt operator*(const ModInt &m) const { return make(x * m.x % MODULO); }
ModInt operator/(const ModInt &m) const { return make(x) * ~make(m.x); }
ModInt &operator+=(const ModInt &m) { return *this = *this + m; }
ModInt &operator-=(const ModInt &m) { return *this = *this - m; }
ModInt &operator*=(const ModInt &m) { return *this = *this * m; }
ModInt &operator/=(const ModInt &m) { return *this = *this / m; }
ModInt &operator^=(const uint64 &y) { return *this = *this ^ y; }
ModInt operator~ () const { return *this ^ (MODULO - 2); }
ModInt operator- () const { return make(set(MODULO - x)); }
ModInt operator! () const { init(uint32(*this)); return fact[uint32(*this)]; }
ModInt operator& () const { init(uint32(*this)); return finv[uint32(*this)]; }
ModInt operator++() { return *this = make(set(x + 1)); }
ModInt operator--() { return *this = make(set(x + MODULO - 1)); }
bool operator==(const ModInt &m) const { return x == m.x; }
bool operator!=(const ModInt &m) const { return x != m.x; }
bool operator< (const ModInt &m) const { return x < m.x; }
bool operator<=(const ModInt &m) const { return x <= m.x; }
bool operator> (const ModInt &m) const { return x > m.x; }
bool operator>=(const ModInt &m) const { return x >= m.x; }
explicit operator bool() const { return x; }
explicit operator uint64() const { return x; }
ModInt operator^(uint64 y) const {
uint64 t = x, u = 1;
while (y) { if (y & 1) (u *= t) %= MODULO; (t *= t) %= MODULO; y >>= 1; }
return make(u);
}
friend ostream &operator<<(ostream &os, const ModInt< MODULO > &m) { return os << m.x; }
friend istream &operator>>(istream &is, ModInt< MODULO > &m) { uint64 y; is >> y; m = make(y); return is; }
static vector< ModInt > fact, finv, invs;
static void init(uint32 n) {
uint32 m = fact.size();
if (n < m) return;
fact.resize(n + 1, 1);
finv.resize(n + 1, 1);
invs.resize(n + 1, 1);
if (m == 0) m = 1;
for (uint32 i = m; i <= n; ++i) fact[i] = fact[i - 1] * ModInt(i);
finv[n] = ModInt(1) / fact[n];
for (uint32 i = n; i >= m; --i) finv[i - 1] = finv[i] * make(i);
for (uint32 i = m; i <= n; ++i) invs[i] = finv[i] * fact[i - 1];
}
static ModInt C(uint64 n, uint64 r) {
if (r == 0) return make(1);
if (r < 0) return make(0);
if (n < 0) return make(r & 1 ? MODULO - 1 : 1) * C(-n + r - 1, r);
if (n == 0 || n < r) return make(0);
init(n);
return fact[n] * finv[n - r] * finv[r];
}
static ModInt P(uint64 n, uint64 r) {
if (n < r || r < 0) return make(0);
init(n);
return fact[n] * finv[n - r];
}
static ModInt H(uint64 n, uint64 r) {
if (n < 0 || r < 0) return make(0);
if (!n && !r) return make(1);
init(n + r - 1);
return C(n + r - 1, r);
}
static ModInt montmort(uint32 n) {
ModInt res;
init(n);
for (uint32 k = 2; k <= n; ++k) {
if (k & 1) res -= finv[k];
else res += finv[k];
}
return res *= fact[n];
}
static ModInt LagrangePolynomial(vector<ModInt> &y, ModInt t) {
uint32 n = y.size() - 1;
if (t.x <= n) return y[t.x];
init(n + 1);
ModInt res, num(1);
for (uint32 i = 0; i <= n; ++i) num *= t - make(i);
for (uint32 i = 0; i <= n; ++i) {
ModInt tmp = y[i] * num / (t - make(i)) * finv[i] * finv[n - i];
if ((n - i) & 1) res -= tmp;
else res += tmp;
}
return res;
}
};
template< int MODULO >
vector<ModInt< MODULO >> ModInt< MODULO >::fact = vector<ModInt< MODULO >>();
template< int MODULO >
vector<ModInt< MODULO >> ModInt< MODULO >::finv = vector<ModInt< MODULO >>();
template< int MODULO >
vector<ModInt< MODULO >> ModInt< MODULO >::invs = vector<ModInt< MODULO >>();
using modint = ModInt< MOD >;
using mint = ModInt< 17 >;
/*
・行列演算
[使用例]
Matrix<ll> mat(n,m); // n行m列の行列を定義
mat[i][j]; // i行j列目の要素を取得
mat.determinant(); // matの行列式を計算
mat ^= k; // matのk乗を計算
*/
template< class T > struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const { return (A.size()); }
size_t width() const { return (A[0].size()); }
inline const vector< T > &operator[](int k) const { return (A.at(k)); }
inline vector< T > &operator[](int k) { return (A.at(k)); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; ++i) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) if (B[j][i] != 0) idx = j;
if (idx == -1) return (0);
if (i != idx) { ret *= -1; swap(B[i], B[idx]); }
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) B[i][j] /= vv;
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) B[j][k] -= B[i][k] * a;
}
}
return (ret);
}
};
signed main() {
Matrix< mint > mat(4, 4);
mat[0][1] = 1;
mat[1][2] = 1;
mat[2][3] = 1;
REP(i, 4) mat[3][i] = 1;
SS(ll, Q);
SV(ll, N, Q);
EACH(n, N) {
if (n <= 3) cout << 0 << endl;
else if (n == 4) cout << 1 << endl;
else {
cout << (mat ^ n - 4)[3][3] << endl;
}
}
}