結果
| 問題 |
No.829 成長関数インフレ中
|
| コンテスト | |
| ユーザー |
kazuma
|
| 提出日時 | 2019-05-03 22:58:05 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 5,977 bytes |
| コンパイル時間 | 2,357 ms |
| コンパイル使用メモリ | 217,400 KB |
| 最終ジャッジ日時 | 2025-01-07 03:28:40 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 14 RE * 8 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<int MOD>
struct mod_int {
static const int mod = MOD;
unsigned x;
mod_int() : x(0) { }
mod_int(int sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; }
mod_int(long long sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
mod_int &operator+=(mod_int that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
mod_int &operator-=(mod_int that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
mod_int &operator*=(mod_int that) { x = (unsigned long long)x * that.x % MOD; return *this; }
mod_int &operator/=(mod_int that) { return *this *= that.inverse(); }
mod_int operator+(mod_int that) const { return mod_int(*this) += that; }
mod_int operator-(mod_int that) const { return mod_int(*this) -= that; }
mod_int operator*(mod_int that) const { return mod_int(*this) *= that; }
mod_int operator/(mod_int that) const { return mod_int(*this) /= that; }
mod_int inverse() const {
long long a = x, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
return mod_int(u);
}
};
template<int MOD>
istream& operator >> (istream& is, mod_int<MOD>& val) {
long long x;
is >> x; val = x;
return is;
}
template<int MOD>
ostream& operator << (ostream& os, const mod_int<MOD>& val) {
os << val.get();
return os;
}
const int mod = 1e9 + 7;
using mint = mod_int<mod>;
const int MAX = 2e6;
bool inited = false;
mint fac[MAX + 1];
mint rfac[MAX + 1];
void init() {
inited = true;
fac[0] = 1;
for (int i = 1; i <= MAX; i++) {
fac[i] = fac[i - 1] * i;
}
rfac[MAX] = fac[MAX].inverse();
for (int i = MAX; i >= 1; i--) {
rfac[i - 1] = rfac[i] * i;
}
}
mint nPr(int n, int r) {
if (!inited) init();
return r < 0 || n < r ? 0 : fac[n] * rfac[n - r];
}
mint nCr(int n, int r) {
if (!inited) init();
return r < 0 || n < r ? 0 : fac[n] * rfac[n - r] * rfac[r];
}
mint nHr(int n, int r) {
if (!inited) init();
return r == 0 ? 1 : nCr(n + r - 1, r);
}
ll mod_inv(ll a, ll m) {
ll b = m, u = 1, v = 0;
while (b > 0) {
ll t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
return (u % m + m) % m;
}
ll garner(std::vector<ll> m, std::vector<ll> u, int md) {
const int n = m.size();
std::vector<ll> inv_prod(n);
for (int i = 1; i < n; ++i) {
ll prod = m[0] % m[i];
for (int j = 1; j < i; ++j) {
prod = (prod * m[j]) % m[i];
}
inv_prod[i] = mod_inv(prod, m[i]);
}
std::vector<ll> v(n);
v[0] = u[0];
for (int i = 1; i < n; ++i) {
ll tmp = v[i - 1];
for (int j = i - 2; j >= 0; --j) {
tmp = (tmp * m[j] + v[j]) % m[i];
}
v[i] = ((u[i] - tmp) * inv_prod[i]) % m[i];
if (v[i] < 0) v[i] += m[i];
}
ll res = v[n - 1];
for (int i = n - 2; i >= 0; --i) {
res = (res * m[i] + v[i]) % md;
}
return res;
}
ll mod_pow(ll x, ll n, int md) {
ll res = 1;
while (n) {
if (n & 1) (res *= x) %= md;
(x *= x) %= md; n >>= 1;
}
return res;
}
template <int Mod, int PrimitiveRoot>
class NTT {
public:
// assertion: v.size() == 2 ^ m
static std::vector<int> fft(std::vector<int> v, bool inv) {
const int n = v.size();
assert((n ^ (n & -n)) == 0);
int ww = mod_pow(PrimitiveRoot, (Mod - 1) / n, Mod);
if (inv) ww = mod_inv(ww, Mod);
for (int m = n; m >= 2; m >>= 1) {
const int mh = m >> 1;
int w = 1;
for (int i = 0; i < mh; ++i) {
for (int j = i; j < n; j += m) {
const int k = j + mh;
int x = v[j] - v[k];
if (x < 0) x += Mod;
v[j] += -Mod + v[k];
if (v[j] < 0) v[j] += Mod;
v[k] = (1LL * w * x) % Mod;
}
w = (1LL * w * ww) % Mod;
}
ww = (1LL * ww * ww) % Mod;
}
int i = 0;
for (int j = 1; j < n - 1; ++j) {
for (int k = n >> 1; k >(i ^= k); k >>= 1);
if (j < i) swap(v[i], v[j]);
}
if (inv) {
const int inv_n = mod_inv(n, Mod);
for (auto& x : v) {
x = (1LL * x * inv_n) % Mod;
assert(0 <= x && x < Mod);
}
}
return v;
}
static std::vector<int> convolution(std::vector<int> f, std::vector<int> g) {
int sz = 1;
const int m = f.size() + g.size() - 1;
while (sz < m) sz *= 2;
f.resize(sz), g.resize(sz);
f = NTT::fft(std::move(f), false); g = NTT::fft(std::move(g), false);
for (int i = 0; i < sz; ++i) {
f[i] = (1LL * f[i] * g[i]) % Mod;
}
return NTT::fft(std::move(f), true);
}
static int get_mod() {
return Mod;
}
};
using NTT_1 = NTT<167772161, 3>; // 5 * 2^25 + 1
using NTT_2 = NTT<469762049, 3>; // 7 * 2^26 + 1
using NTT_3 = NTT<1224736769, 3>; // 73 * 2^24 + 1
std::vector<int> mod_convolution(std::vector<int> f, std::vector<int> g, const int md) {
for (auto& x : f) x %= md;
for (auto& y : g) y %= md;
const auto v1 = NTT_1::convolution(f, g);
const auto v2 = NTT_2::convolution(f, g);
const auto v3 = NTT_3::convolution(f, g);
vector<int> res(v1.size());
vector<ll> m = { NTT_1::get_mod(), NTT_2::get_mod(), NTT_3::get_mod() };
for (int i = 0; i < (int)v1.size(); ++i) {
vector<ll> u = { v1[i], v2[i], v3[i] };
res[i] = garner(m, u, md);
}
return res;
}
vector<int> calc(int lb, int ub, const vector<vector<int>>& a) {
if (ub - lb == 1) return a[lb];
int m = (lb + ub) / 2;
auto v1 = calc(lb, m, a);
auto v2 = calc(m, ub, a);
auto v = mod_convolution(v1, v2, mod);
while (!v.empty() && v.back() == 0) v.pop_back();
return v;
}
int main()
{
int N;
mint B;
cin >> N >> B;
map<int, int> cnt;
for (int i = 0; i < N; i++) {
int S;
cin >> S;
cnt[S]++;
}
int size = N;
vector<vector<int>> aa;
for (auto p : cnt) {
mint all = nCr(size, p.second) * fac[p.second];
mint x0 = nCr(size - 1, p.second) * fac[p.second];
vector<int> vec;
vec.push_back(x0.get());
vec.push_back(((all - x0) * B).get());
aa.emplace_back(vec);
size -= p.second;
}
auto v = calc(0, aa.size(), aa);
mint res = 0;
for (int i = 0; i < (int)v.size(); i++) {
res += mint(v[i]) * i;
}
cout << res << endl;
return 0;
}
kazuma