結果
問題 | No.829 成長関数インフレ中 |
ユーザー |
|
提出日時 | 2019-05-03 23:12:25 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 718 ms / 2,000 ms |
コード長 | 5,131 bytes |
コンパイル時間 | 1,274 ms |
コンパイル使用メモリ | 96,392 KB |
実行使用メモリ | 61,868 KB |
最終ジャッジ日時 | 2024-12-31 19:05:57 |
合計ジャッジ時間 | 5,900 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 22 |
ソースコード
#include <iostream>#include <algorithm>#include <vector>#include <string>#include <complex>#define REP(i, n) for (int i = 0; i < (n); i++)using namespace std;const int MOD = 1e9 + 7;struct mint {int n;mint(int n_ = 0) : n(n_) {}};mint operator+(mint a, mint b) { a.n += b.n; if (a.n >= MOD) a.n -= MOD; return a; }mint operator-(mint a, mint b) { a.n -= b.n; if (a.n < 0) a.n += MOD; return a; }mint operator*(mint a, mint b) { return (long long)a.n * b.n % MOD; }mint &operator+=(mint &a, mint b) { return a = a + b; }mint &operator-=(mint &a, mint b) { return a = a - b; }mint &operator*=(mint &a, mint b) { return a = a * b; }mint modpow(mint a, long long b) {mint res = 1;while (b > 0) {if (b & 1) res *= a;a *= a;b >>= 1;}return res;}mint F[200001] = {1, 1};mint R[200001] = {1, 1};mint I[200001] = {0, 1};mint C(int n, int r) {if (n < 0 || r < 0 || n < r) return 0;return F[n] * R[n - r] * R[r];}void init() {for (int i = 2; i <= 200000; i++) {I[i] = I[MOD % i] * (MOD - MOD / i);F[i] = F[i - 1] * i;R[i] = R[i - 1] * I[i];}}mint modinv(mint a) {return modpow(a, MOD - 2);}template<int N>struct FFT {complex<double> rots[N];FFT() {const double pi = acos(-1);for (int i = 0; i < N / 2; i++) {rots[i + N / 2].real(cos(2 * pi / N * i));rots[i + N / 2].imag(sin(2 * pi / N * i));}for (int i = N / 2 - 1; i >= 1; i--) {rots[i] = rots[i * 2];}}inline complex<double> mul(complex<double> a, complex<double> b) {return complex<double>(a.real() * b.real() - a.imag() * b.imag(),a.real() * b.imag() + a.imag() * b.real());}void fft(vector<complex<double>> &a, bool rev) {const int n = a.size();int i = 0;for (int j = 1; j < n - 1; j++) {for (int k = n >> 1; k > (i ^= k); k >>= 1);if (j < i) {swap(a[i], a[j]);}}for (int i = 1; i < n; i *= 2) {for (int j = 0; j < n; j += i * 2) {for (int k = 0; k < i; k++) {auto s = a[j + k + 0];auto t = mul(a[j + k + i], rots[i + k]);a[j + k + 0] = s + t;a[j + k + i] = s - t;}}}if (rev) {reverse(a.begin() + 1, a.end());for (int i = 0; i < n; i++) {a[i] *= 1.0 / n;}}}vector<long long> convolution(vector<long long> a, vector<long long> b) {int t = 1;while (t < a.size() + b.size() - 1) t *= 2;vector<complex<double>> z(t);for (int i = 0; i < a.size(); i++) z[i].real(a[i]);for (int i = 0; i < b.size(); i++) z[i].imag(b[i]);fft(z, false);vector<complex<double>> w(t);for (int i = 0; i < t; i++) {auto p = (z[i] + conj(z[(t - i) % t])) * complex<double>(0.5, 0);auto q = (z[i] - conj(z[(t - i) % t])) * complex<double>(0, -0.5);w[i] = p * q;}fft(w, true);vector<long long> ans(a.size() + b.size() - 1);for (int i = 0; i < ans.size(); i++) {ans[i] = round(w[i].real());}return ans;}vector<mint> convolution(vector<mint> a, vector<mint> b) {int t = 1;while (t < a.size() + b.size() - 1) t *= 2;vector<complex<double>> A(t), B(t);for (int i = 0; i < a.size(); i++) A[i] = complex<double>(a[i].n & 0x7fff, a[i].n >> 15);for (int i = 0; i < b.size(); i++) B[i] = complex<double>(b[i].n & 0x7fff, b[i].n >> 15);fft(A, false);fft(B, false);vector<complex<double>> C(t), D(t);for (int i = 0; i < t; i++) {int j = (t - i) % t;auto AL = (A[i] + conj(A[j])) * complex<double>(0.5, 0);auto AH = (A[i] - conj(A[j])) * complex<double>(0, -0.5);auto BL = (B[i] + conj(B[j])) * complex<double>(0.5, 0);auto BH = (B[i] - conj(B[j])) * complex<double>(0, -0.5);C[i] = AL * BL + AH * BL * complex<double>(0, 1);D[i] = AL * BH + AH * BH * complex<double>(0, 1);}fft(C, true);fft(D, true);vector<mint> ans(a.size() + b.size() - 1);for (int i = 0; i < ans.size(); i++) {long long l = (long long)round(C[i].real()) % MOD;long long m = ((long long)round(C[i].imag()) + (long long)round(D[i].real())) % MOD;long long h = (long long)round(D[i].imag()) % MOD;ans[i] = (l + (m << 15) + (h << 30)) % MOD;}return ans;}};FFT<1 << 21> fft;vector<mint> prod(const vector<mint> &A, const vector<mint> &B, int l, int r) {if (r - l == 1) return {A[l], B[l]};int m = (l + r) / 2;auto vl = prod(A, B, l, m);auto vr = prod(A, B, m, r);return fft.convolution(vl, vr);}int main() {init();int N, R;cin >> N >> R;vector<int> S(N);REP(i, N) cin >> S[i];sort(S.rbegin(), S.rend());int i = 0;vector<mint> A, B;while (i < N) {int j = i;while (i < N && S[i] == S[j]) i++;A.push_back(F[i - j] * C(i-j + j-1, i-j));B.push_back(F[i - j] * C(i-j-1 + j, j));}vector<mint> f = prod(A, B, 0, A.size());mint ans = 0;for (int i = 0; i < f.size(); i++) {ans += f[i] * i * modpow(R, i);}cout << ans.n << '\n';}