結果
| 問題 | No.827 総神童数 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-05-04 10:19:22 |
| 言語 | C++17(clang) (17.0.6 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 101 ms / 2,000 ms |
| コード長 | 5,546 bytes |
| 記録 | |
| コンパイル時間 | 1,341 ms |
| コンパイル使用メモリ | 143,280 KB |
| 実行使用メモリ | 13,952 KB |
| 最終ジャッジ日時 | 2024-11-30 14:06:31 |
| 合計ジャッジ時間 | 4,329 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 |
ソースコード
#include <iostream>
#include <list>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#include <map>
#include <chrono>
#include <math.h>
using namespace std;
using lli = long long int;
using Vint = std::vector<int>;
using Vlli = std::vector<lli>;
using Wint = std::vector<Vint>;
using Wlli = std::vector<Vlli>;
using Vbool = std::vector<bool>;
using pii = std::pair<int, int>;
using pll = std::pair<lli, lli>;
template <class T>
using Vec = std::vector<T>;
constexpr int MOD = 1e9 + 7;
constexpr int INFi = 2e9 + 1;
constexpr lli INFl = (lli)(9e18) + 1;
const vector<pii> DXDY = {std::make_pair(1, 0), std::make_pair(-1, 0), std::make_pair(0, 1), std::make_pair(0, -1)};
constexpr char BR = '\n';
#define FOR(i, a, b) for(int (i) = (a); (i) < (b); (i)++)
#define FOReq(i, a, b) for(int (i) = (a); (i) <= (b); (i)++)
#define rFOR(i, a, b) for(int (i) = (b); (i) >= (a); i--)
#define FORstep(i, a, b, step) for(int (i) = (a); i < (b); i += (step))
#define REP(i, n) FOR(i, 0, n)
#define rREP(i, n) rFOR(i, 0, (n-1))
#define vREP(ele, vec) for(auto &(ele) : (vec))
#define vREPcopy(ele, vec) for(auto (ele) : (vec))
#define SORT(A) std::sort((A).begin(), (A).end())
#define rSORT(A) std::sort((A).rbegin(), (A).rend())
// 座標圧縮 (for vector) : ソートしてから使うのが一般的 ; SORT(A) => COORDINATE_COMPRESSION(A)
#define COORDINATE_COMPRESSION(A) (A).erase(unique((A).begin(),(A).end()),(A).end())
template <class T> inline int argmin(std::vector<T> vec){return min_element(vec.begin(), vec.end()) - vec.begin();}
template <class T> inline int argmax(std::vector<T> vec){return max_element(vec.begin(), vec.end()) - vec.begin();}
template <class T> inline void chmax(T &a, T b){a = max(a, b);}
template <class T> inline void chmin(T &a, T b){a = min(a, b);}
inline int BitI(int k){return 1 << k;}
inline lli BitL(int k){return 1L << k;}
inline int toInt(string &s){int res = 0; for(char a : s) res = 10 * res + (a - '0'); return res;}
inline int toInt(const string s){int res = 0; for(char a : s) res = 10 * res + (a - '0'); return res;}
inline long long int toLong(string &s){lli res = 0; for(char a : s) res = 10 * res + (a - '0'); return res;}
inline long long int toLong(const string s){lli res = 0; for(char a : s) res = 10 * res + (a - '0'); return res;}
template <class T> inline std::string toString(T n){
if(n == 0) return "0";
std::string res = "";
if(n < 0){n = -n;while(n != 0){res += (char)(n % 10 + '0'); n /= 10;}
std::reverse(res.begin(), res.end()); return '-' + res;}
while(n != 0){res += (char)(n % 10 + '0'); n /= 10;} std::reverse(res.begin(), res.end()); return res;
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <long long int mod_number__ = MOD>
struct Modlli{
using lli = long long int;
lli number;
// +, -, *, /, +=, -=, *=, /= が Modについて定義する
inline Modlli operator +(Modlli that) const {return Modlli((this->number + that.number) % mod_number__);}
inline void operator +=(Modlli that){this->number = (this->number + that.number) % mod_number__;}
inline void operator ++(){this->number = (this->number + 1) % mod_number__;}
inline Modlli operator -(Modlli that) const {return Modlli((this->number - that.number + mod_number__) % mod_number__);}
inline void operator -=(Modlli that){this->number = (this->number + that.number + mod_number__) % mod_number__;}
inline void operator --(){this->number = (this->number - 1) % mod_number__;}
inline Modlli operator *(Modlli that) const {return Modlli((this->number * that.number) % mod_number__); }
inline void operator *=(const Modlli that){this->number = (this->number * that.number) % mod_number__;}
inline Modlli power(lli n) const { // 冪乗 : number^nを計算
lli res = 1LL, waiting = this->number;
while(n != 0LL){
if((n & 1LL) != 0LL) res = (res * waiting) % mod_number__;
waiting = waiting * waiting % mod_number__; n >>= 1;
}
return Modlli(res);
}
inline Modlli inv(void) const {return this->power(mod_number__ - 2);}
inline Modlli operator /(Modlli that) const{ return (*this) * that.inv();}
inline void operator /=(Modlli that) {
lli n = mod_number__ - 2;
lli res = 1LL, waiting = that.number;
while(n != 0LL){
if((n & 1LL) != 0LL) res = (res * waiting) % mod_number__;
waiting = waiting * waiting % mod_number__; n >>= 1;
}
this->snumber = (this->number * res) % MOD;
}
inline Modlli operator %(Modlli that){return Modlli(this->number % that.number);}
inline Modlli operator %=(Modlli that){this->number %= that.number;}
Modlli(lli mn){ number = mn % mod_number__;}
~Modlli(void){}
//operator long long int() const {return number;}
lli toLong(void) const {return number;}
};
using modint = Modlli<MOD>;
int main(void){
int n; scanf("%d", &n);Wint Tree(n, Vint(0));
REP(_, n-1){
int a, b; scanf("%d%d", &a, &b); a--; b--;
Tree[a].emplace_back(b); Tree[b].emplace_back(a);
}
Vbool hasDone(n, false);
queue<int> A; A.push(0); hasDone[0] = true;
modint res(0);
modint kaijou(1);
int depth = 1;
for(int i = 2; i <= n; i++) kaijou *= modint(i);
while(not A.empty()){
int sz = A.size();
REP(_, sz){
int idx = A.front(); A.pop();
vREP(ele, Tree[idx]){
if(not hasDone[ele]){
hasDone[ele] = true; A.push(ele);
}
}
}
res += (modint(sz) / modint(depth));
depth++;
}
cout << (res * kaijou).toLong() << BR;
return 0;
}