結果
| 問題 |
No.829 成長関数インフレ中
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-05-04 16:41:54 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 7,665 bytes |
| コンパイル時間 | 2,540 ms |
| コンパイル使用メモリ | 218,460 KB |
| 最終ジャッジ日時 | 2025-01-07 03:37:13 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 TLE * 5 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll mod_inv(ll a, ll m) {
ll b = m, u = 1, v = 0;
while(b > 0) {
ll t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
return (u % m + m) % m;
}
ll mod_pow(ll x, ll n, ll m) {
ll res = 1;
while(n > 0) {
if(n & 1) (res *= x) %= m;
(x *= x) %= m;
n >>= 1;
}
return res;
}
// solve: find x which statisfies (x mod m[i]) == u[i]
// require: m[i] are co-prime
ll garner(std::vector<ll> m, std::vector<ll> u, int mod) {
const int n = m.size();
std::vector<ll> inv_prod(n);
for(int i = 1; i < n; ++i) {
ll prod = m[0] % m[i];
for(int j = 1; j < i; ++j) {
prod = (prod * m[j]) % m[i];
}
inv_prod[i] = mod_inv(prod, m[i]);
}
std::vector<ll> v(n);
v[0] = u[0];
for(int i = 1; i < n; ++i) {
ll tmp = v[i - 1];
for(int j = i - 2; j >= 0; --j) {
tmp = (tmp * m[j] + v[j]) % m[i];
}
v[i] = ((u[i] - tmp) * inv_prod[i]) % m[i];
if(v[i] < 0) v[i] += m[i];
}
ll res = v[n - 1];
for(int i = n - 2; i >= 0; --i) {
res = (res * m[i] + v[i]) % mod;
}
return res;
}
template <int Mod, bool IsPrime = false>
class mod_int {
using ll = long long;
public:
constexpr mod_int() : n(0) {}
constexpr mod_int(int n_) : n(n_) {
if(n >= Mod) n %= Mod;
else if(n < 0) n = (n % Mod + Mod) % Mod;
}
constexpr mod_int(ll n_) : n(n_) { n = (n + Mod) % Mod; }
constexpr operator int() const { return n; }
constexpr operator ll() const { return n; }
constexpr bool operator==(mod_int const& other) const { return n == other.n; }
constexpr mod_int& operator+=(mod_int const& other) {
if((n += other.n) >= Mod) n -= Mod;
return *this;
}
constexpr mod_int& operator-=(mod_int const& other) {
if((n += Mod - other.n) >= Mod) n -= Mod;
return *this;
}
constexpr mod_int& operator*=(mod_int const& other) {
n = (unsigned long long)n * other.n % Mod;
return *this;
}
constexpr typename std::enable_if<IsPrime, mod_int>::type& operator/=(mod_int const& other) {
return *this *= other.inverse();
}
constexpr mod_int operator+(mod_int other) const { return mod_int(*this) += other; }
constexpr mod_int operator-(mod_int other) const { return mod_int(*this) -= other; }
constexpr mod_int operator*(mod_int other) const { return mod_int(*this) *= other; }
constexpr mod_int operator/(mod_int other) const { return mod_int(*this) /= other; }
constexpr typename std::enable_if<IsPrime, mod_int>::type inverse() const {
ll a = n, b = Mod, u = 1, v = 0;
while(b) {
ll t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
return mod_int(u);
}
private:
ll n;
};
template <int Mod, bool IsPrime>
std::ostream& operator<<(std::ostream& os, mod_int<Mod, IsPrime> const& n) {
os << (int)n;
return os;
}
constexpr int default_mod = 1000000007;
template <int Mod = default_mod>
mod_int<Mod, true> fact(int n, bool inv) {
static std::vector<mod_int<Mod, true>> v = {1};
static std::vector<mod_int<Mod, true>> v2 = {1};
if(n >= static_cast<int>(v.size())) {
const int from = v.size(), to = n + 1024;
v.reserve(to); v2.reserve(to);
for(int i = from; i < to; ++i) {
v.push_back(v.back() * mod_int<Mod, true>(i));
v2.push_back(v2.back() / mod_int<Mod, true>(i));
}
}
return (inv ? v2[n] : v[n]);
}
template <int Mod = default_mod>
mod_int<Mod, true> comb(int n, int r) { // nCr
if(r < 0 || r > n) return 0;
return fact<Mod>(n, false) * fact<Mod>(r, true) * fact<Mod>(n - r, true);
}
using mint = mod_int<default_mod, true>; // default
template <int Mod, int PrimitiveRoot>
class NTT {
public:
// assertion: v.size() == 2 ^ m
static std::vector<int> fft(std::vector<int> v, bool inv) {
for(auto& x : v) x %= Mod;
const int n = v.size();
assert((n ^ (n & -n)) == 0);
int ww = mod_pow(PrimitiveRoot, (Mod - 1) / n, Mod);
if(inv) ww = mod_inv(ww, Mod);
for(int m = n; m >= 2; m >>= 1) {
const int mh = m >> 1;
int w = 1;
for(int i = 0; i < mh; ++i) {
for(int j = i; j < n; j += m) {
const int k = j + mh;
int x = v[j] - v[k];
if(x < 0) x += Mod;
v[j] += - Mod + v[k];
if(v[j] < 0) v[j] += Mod;
v[k] = (1LL * w * x) % Mod;
}
w = (1LL * w * ww) % Mod;
}
ww = (1LL * ww * ww) % Mod;
}
int i = 0;
for(int j = 1; j < n - 1; ++j) {
for(int k = n >> 1; k > (i ^= k); k >>= 1);
if(j < i) swap(v[i], v[j]);
}
if(inv) {
const int inv_n = mod_inv(n, Mod);
for(auto& x : v) {
x = (1LL * x * inv_n) % Mod;
}
}
return v;
}
static std::vector<int> convolution(std::vector<int> f, std::vector<int> g) {
int sz = 1;
const int m = f.size() + g.size() - 1;
while(sz < m) sz *= 2;
f.resize(sz), g.resize(sz);
f = NTT::fft(std::move(f), false); g = NTT::fft(std::move(g), false);
for(int i = 0; i < sz; ++i) {
f[i] = (1LL * f[i] * g[i]) % Mod;
}
return NTT::fft(std::move(f), true);
}
static int get_mod() {
return Mod;
}
};
using NTT_1 = NTT<167772161, 3>; // 5 * 2^25 + 1
using NTT_2 = NTT<469762049, 3>; // 7 * 2^26 + 1
using NTT_3 = NTT<1224736769, 3>; // 73 * 2^24 + 1
void shrink(vector<int>& v) {
if(!v.empty() && v.back() == 1) v.pop_back();
}
std::vector<int> mod_convolution(std::vector<int> f, std::vector<int> g, const int mod) {
for(auto& x : f) x %= mod;
for(auto& y : g) y %= mod;
const auto v1 = NTT_1::convolution(f, g);
const auto v2 = NTT_2::convolution(f, g);
const auto v3 = NTT_3::convolution(f, g);
vector<int> res(v1.size());
vector<ll> m = {NTT_1::get_mod(), NTT_2::get_mod(), NTT_3::get_mod()};
for(int i = 0; i < (int)v1.size(); ++i) {
vector<ll> u = {v1[i], v2[i], v3[i]};
res[i] = garner(m, u, mod);
}
shrink(res);
return res;
}
constexpr int mod = 1e9 + 7;
int main() {
ios_base::sync_with_stdio(false); cin.tie(0);
int n, b; cin >> n >> b;
vector<int> c(n + 1);
for(int i = 0; i < n; ++i) {
int s; cin >> s;
c[s] += 1;
}
auto v = c;
for(int i = n - 1; i >= 0; --i) {
v[i] += v[i + 1];
}
queue<vector<int>> que;
for(int i = 0; i < n; ++i) {
if(c[n - i - 1] == 0) continue;
const auto a = fact(v[n - i - 1], false) * fact(v[n - i], true) * mint(c[n - i - 1]) / mint(v[n - i - 1]);
const auto b_ = fact(v[n - i - 1], false) * fact(v[n - i], true) * mint(v[n - i]) / mint(v[n - i - 1]);
que.push({(int)b_, (int)a});
}
while(que.size() > 1) {
auto f = que.front();
que.pop();
auto g = que.front();
que.pop();
auto h = mod_convolution(move(f), move(g), mod);
shrink(h);
que.push(move(h));
}
auto f = que.front();
mint ans = 0, base = 1;
for(int i = 0; i <= n; ++i, base *= b) {
ans += mint(i) * base * ((int)f.size() > i ? mint(f[i]) : mint(0));
}
cout << ans << endl;
}