結果
問題 | No.827 総神童数 |
ユーザー | FF256grhy |
提出日時 | 2019-05-06 07:30:57 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 247 ms / 2,000 ms |
コード長 | 4,651 bytes |
コンパイル時間 | 1,684 ms |
コンパイル使用メモリ | 175,352 KB |
実行使用メモリ | 15,908 KB |
最終ジャッジ日時 | 2024-06-27 00:08:30 |
合計ジャッジ時間 | 8,251 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
7,984 KB |
testcase_01 | AC | 3 ms
8,280 KB |
testcase_02 | AC | 4 ms
8,112 KB |
testcase_03 | AC | 4 ms
8,492 KB |
testcase_04 | AC | 4 ms
8,164 KB |
testcase_05 | AC | 3 ms
8,168 KB |
testcase_06 | AC | 3 ms
8,088 KB |
testcase_07 | AC | 4 ms
8,148 KB |
testcase_08 | AC | 4 ms
8,100 KB |
testcase_09 | AC | 216 ms
15,156 KB |
testcase_10 | AC | 74 ms
10,548 KB |
testcase_11 | AC | 6 ms
8,304 KB |
testcase_12 | AC | 31 ms
9,272 KB |
testcase_13 | AC | 170 ms
13,664 KB |
testcase_14 | AC | 9 ms
8,400 KB |
testcase_15 | AC | 64 ms
10,368 KB |
testcase_16 | AC | 167 ms
13,688 KB |
testcase_17 | AC | 201 ms
14,856 KB |
testcase_18 | AC | 83 ms
11,060 KB |
testcase_19 | AC | 247 ms
15,908 KB |
testcase_20 | AC | 185 ms
13,956 KB |
testcase_21 | AC | 116 ms
12,372 KB |
testcase_22 | AC | 202 ms
14,468 KB |
testcase_23 | AC | 6 ms
8,604 KB |
testcase_24 | AC | 233 ms
14,944 KB |
testcase_25 | AC | 168 ms
13,444 KB |
testcase_26 | AC | 230 ms
15,108 KB |
testcase_27 | AC | 130 ms
12,816 KB |
testcase_28 | AC | 122 ms
12,740 KB |
testcase_29 | AC | 95 ms
11,788 KB |
testcase_30 | AC | 30 ms
9,272 KB |
testcase_31 | AC | 77 ms
11,044 KB |
testcase_32 | AC | 72 ms
10,852 KB |
testcase_33 | AC | 239 ms
15,828 KB |
testcase_34 | AC | 208 ms
15,080 KB |
testcase_35 | AC | 73 ms
11,124 KB |
testcase_36 | AC | 104 ms
12,268 KB |
testcase_37 | AC | 145 ms
13,308 KB |
testcase_38 | AC | 236 ms
15,340 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incII(i, l, r) for(int i = (l) ; i <= (r); ++i) #define incID(i, l, r) for(int i = (l) ; i < (r); ++i) #define decII(i, l, r) for(int i = (r) ; i >= (l); --i) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() template<typename T> bool setmin (T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template<typename T> bool setmax (T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; } LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } #define bit(b, i) (((b) >> (i)) & 1) #define BC __builtin_popcountll #define SC(T, v) static_cast<T>(v) #define SI(v) SC(int, v.size()) #define SL(v) SC( LL, v.size()) #define RF(e, v) for(auto & e: v) #define ei else if #define UR assert(false) // ---- ---- template<LL M> class ModInt { private: LL v = 0; public: ModInt() { } ModInt(LL vv) { setval(vv); } ModInt & setval(LL vv) { v = vv % M; if(v < 0) { v += M; } return (*this); } LL getval() const { return v; } ModInt & operator+=(const ModInt & b) { return setval(v + b.v); } ModInt & operator-=(const ModInt & b) { return setval(v - b.v); } ModInt & operator*=(const ModInt & b) { return setval(v * b.v); } ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); } ModInt & operator^=( LU b) { return setval(ex(v, b)); } ModInt operator+ ( ) const { return ModInt(+v); } ModInt operator- ( ) const { return ModInt(-v); } ModInt operator+ (const ModInt & b) const { return ModInt(v + b.v); } ModInt operator- (const ModInt & b) const { return ModInt(v - b.v); } ModInt operator* (const ModInt & b) const { return ModInt(v * b.v); } ModInt operator/ (const ModInt & b) const { return ModInt(v * b.inv()); } ModInt operator^ ( LU b) const { return ModInt(ex(v, b)); } LL inv() const { LL x = (ex_gcd(v, M).FI + M) % M; assert(v * x % M == 1); return x; } LL ex(LL a, LU b) const { LL D = 64, x[64], y = 1; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % M; } inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= M; } } return y; } pair<LL, LL> ex_gcd(LL a, LL b) const { if(b == 0) { return MP(1, 0); } auto p = ex_gcd(b, a % b); return MP(p.SE, p.FI - (a / b) * p.SE); } }; template<LL M> ModInt<M> operator+(LL a, const ModInt<M> & b) { return b + a; } template<LL M> ModInt<M> operator-(LL a, const ModInt<M> & b) { return -b + a; } template<LL M> ModInt<M> operator*(LL a, const ModInt<M> & b) { return b * a; } template<LL M> ModInt<M> operator/(LL a, const ModInt<M> & b) { return a * b.inv(); } template<LL M> istream & operator>>(istream & is, ModInt<M> & b) { LL v; is >> v; b.setval(v); return is; } template<LL M> ostream & operator<<(ostream & os, const ModInt<M> & b) { return (os << b.getval()); } // ---- ---- typedef ModInt<1'000'000'007> MI; template<typename T> class RPQ : public priority_queue<T, vector<T>, greater<T>> { }; template<typename C> void dijkstra(int s, vector<pair<int, C>> g[], C d[]) { RPQ<pair<C, int>> q; d[s] = 0; q.emplace(d[s], s); while(! q.empty()) { C c = q.top().FI; int v = q.top().SE; q.pop(); if(d[v] != c) { continue; } for(auto & e : g[v]) { int ev = e.FI; C ec = e.SE; if(setmin(d[ev], d[v] + ec)) { q.emplace(d[ev], ev); } } } } int n, d[200000]; vector<pair<int, int>> g[200000]; int main() { cin >> n; inc(i, n - 1) { int a, b; cin >> a >> b; a--; b--; g[a].EB(b, 1); g[b].EB(a, 1); } inc(i, n) { d[i] = n; } dijkstra(0, g, d); MI ans = 0; inc(i, n) { ans += 1 / MI(d[i] + 1); } inc1(i, n) { ans *= i; } cout << ans << endl; return 0; }