結果

問題 No.827 総神童数
ユーザー FF256grhyFF256grhy
提出日時 2019-05-06 07:30:57
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 247 ms / 2,000 ms
コード長 4,651 bytes
コンパイル時間 1,684 ms
コンパイル使用メモリ 175,352 KB
実行使用メモリ 15,908 KB
最終ジャッジ日時 2024-06-27 00:08:30
合計ジャッジ時間 8,251 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
7,984 KB
testcase_01 AC 3 ms
8,280 KB
testcase_02 AC 4 ms
8,112 KB
testcase_03 AC 4 ms
8,492 KB
testcase_04 AC 4 ms
8,164 KB
testcase_05 AC 3 ms
8,168 KB
testcase_06 AC 3 ms
8,088 KB
testcase_07 AC 4 ms
8,148 KB
testcase_08 AC 4 ms
8,100 KB
testcase_09 AC 216 ms
15,156 KB
testcase_10 AC 74 ms
10,548 KB
testcase_11 AC 6 ms
8,304 KB
testcase_12 AC 31 ms
9,272 KB
testcase_13 AC 170 ms
13,664 KB
testcase_14 AC 9 ms
8,400 KB
testcase_15 AC 64 ms
10,368 KB
testcase_16 AC 167 ms
13,688 KB
testcase_17 AC 201 ms
14,856 KB
testcase_18 AC 83 ms
11,060 KB
testcase_19 AC 247 ms
15,908 KB
testcase_20 AC 185 ms
13,956 KB
testcase_21 AC 116 ms
12,372 KB
testcase_22 AC 202 ms
14,468 KB
testcase_23 AC 6 ms
8,604 KB
testcase_24 AC 233 ms
14,944 KB
testcase_25 AC 168 ms
13,444 KB
testcase_26 AC 230 ms
15,108 KB
testcase_27 AC 130 ms
12,816 KB
testcase_28 AC 122 ms
12,740 KB
testcase_29 AC 95 ms
11,788 KB
testcase_30 AC 30 ms
9,272 KB
testcase_31 AC 77 ms
11,044 KB
testcase_32 AC 72 ms
10,852 KB
testcase_33 AC 239 ms
15,828 KB
testcase_34 AC 208 ms
15,080 KB
testcase_35 AC 73 ms
11,124 KB
testcase_36 AC 104 ms
12,268 KB
testcase_37 AC 145 ms
13,308 KB
testcase_38 AC 236 ms
15,340 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long   signed int LL;
typedef long long unsigned int LU;
#define incII(i, l, r) for(int i = (l)    ; i <= (r); ++i)
#define incID(i, l, r) for(int i = (l)    ; i <  (r); ++i)
#define decII(i, l, r) for(int i = (r)    ; i >= (l); --i)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i)
#define inc(i, n)  incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n)  decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define inID(v, l, r) ((l) <= (v) && (v) <  (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define  ALL(v)  v.begin(),  v.end()
#define RALL(v) v.rbegin(), v.rend()
template<typename T> bool setmin  (T & a, T b) { if(b <  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax  (T & a, T b) { if(b >  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; }
LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
#define bit(b, i) (((b) >> (i)) & 1)
#define BC __builtin_popcountll
#define SC(T, v) static_cast<T>(v)
#define SI(v) SC(int, v.size())
#define SL(v) SC( LL, v.size())
#define RF(e, v) for(auto & e: v)
#define ei else if
#define UR assert(false)

// ---- ----

template<LL M> class ModInt {
private:
	LL v = 0;
public:
	ModInt() { }
	ModInt(LL vv) { setval(vv); }
	ModInt & setval(LL vv) { v = vv % M; if(v < 0) { v += M; } return (*this); }
	LL getval() const { return v; }
	ModInt & operator+=(const ModInt & b)       { return setval(v + b.v); }
	ModInt & operator-=(const ModInt & b)       { return setval(v - b.v); }
	ModInt & operator*=(const ModInt & b)       { return setval(v * b.v); }
	ModInt & operator/=(const ModInt & b)       { return setval(v * b.inv()); }
	ModInt & operator^=(            LU b)       { return setval(ex(v, b)); }
	ModInt   operator+ (                ) const { return ModInt(+v); }
	ModInt   operator- (                ) const { return ModInt(-v); }
	ModInt   operator+ (const ModInt & b) const { return ModInt(v + b.v); }
	ModInt   operator- (const ModInt & b) const { return ModInt(v - b.v); }
	ModInt   operator* (const ModInt & b) const { return ModInt(v * b.v); }
	ModInt   operator/ (const ModInt & b) const { return ModInt(v * b.inv()); }
	ModInt   operator^ (            LU b) const { return ModInt(ex(v, b)); }
	LL inv() const {
		LL x = (ex_gcd(v, M).FI + M) % M;
		assert(v * x % M == 1);
		return x;
	}
	LL ex(LL a, LU b) const {
		LL D = 64, x[64], y = 1;
		inc(i, D) { if((b >> i) == 0) { D = i; break; } }
		inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % M; }
		inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= M; } }
		return y;
	}
	pair<LL, LL> ex_gcd(LL a, LL b) const {
		if(b == 0) { return MP(1, 0); }
		auto p = ex_gcd(b, a % b);
		return MP(p.SE, p.FI - (a / b) * p.SE);
	}
};
template<LL M> ModInt<M> operator+(LL a, const ModInt<M> & b) { return  b + a; }
template<LL M> ModInt<M> operator-(LL a, const ModInt<M> & b) { return -b + a; }
template<LL M> ModInt<M> operator*(LL a, const ModInt<M> & b) { return  b * a; }
template<LL M> ModInt<M> operator/(LL a, const ModInt<M> & b) { return  a * b.inv(); }
template<LL M> istream & operator>>(istream & is, ModInt<M> & b) { LL v; is >> v; b.setval(v); return is; }
template<LL M> ostream & operator<<(ostream & os, const ModInt<M> & b) { return (os << b.getval()); }

// ---- ----

typedef ModInt<1'000'000'007> MI;

template<typename T> class RPQ : public priority_queue<T, vector<T>, greater<T>> { };
template<typename C> void dijkstra(int s, vector<pair<int, C>> g[], C d[]) {
	RPQ<pair<C, int>> q;
	d[s] = 0;
	q.emplace(d[s], s);
	while(! q.empty()) {
		C   c = q.top().FI;
		int v = q.top().SE;
		q.pop();
		if(d[v] != c) { continue; }
		for(auto & e : g[v]) {
			int ev = e.FI;
			C   ec = e.SE;
			if(setmin(d[ev], d[v] + ec)) { q.emplace(d[ev], ev); }
		}
	}
}

int n, d[200000];
vector<pair<int, int>> g[200000];

int main() {
	cin >> n;
	inc(i, n - 1) {
		int a, b;
		cin >> a >> b;
		a--; b--;
		g[a].EB(b, 1);
		g[b].EB(a, 1);
	}
	
	inc(i, n) { d[i] = n; }
	dijkstra(0, g, d);
	
	MI ans = 0;
	inc(i, n) { ans += 1 / MI(d[i] + 1); }
	inc1(i, n) { ans *= i; }
	
	cout << ans << endl;
	
	return 0;
}
0