結果
| 問題 |
No.103 素因数ゲーム リターンズ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-05-07 10:03:45 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 36 ms / 5,000 ms |
| コード長 | 60,789 bytes |
| コンパイル時間 | 10,944 ms |
| コンパイル使用メモリ | 293,064 KB |
| 最終ジャッジ日時 | 2025-01-07 03:40:33 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
| 純コード判定しない問題か言語 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 20 |
ソースコード
/**
*
*/
// header {{{
#include <bits/stdc++.h>
using namespace std;
#define CPP_STR(x) CPP_STR_I(x)
#define CPP_CAT(x,y) CPP_CAT_I(x,y)
#define CPP_STR_I(args...) #args
#define CPP_CAT_I(x,y) x ## y
using i8 = int8_t;
using u8 = uint8_t;
using i16 = int16_t;
using u16 = uint16_t;
using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128;
using u128 = unsigned __int128;
#endif
using f32 = float;
using f64 = double;
using f80 = __float80;
using f128 = __float128;
// }}}
template<typename T> constexpr T PROCON_INF();
template<> constexpr i64 PROCON_INF<i64>() { return 1'010'000'000'000'000'017LL; }
template<> constexpr f64 PROCON_INF<f64>() { return 1e100; }
constexpr i64 INF = PROCON_INF<i64>();
constexpr f64 FINF = PROCON_INF<f64>();
constexpr i64 MOD = 1'000'000'007LL;
constexpr f64 EPS = 1e-12;
constexpr f64 PI = 3.14159265358979323846;
// util {{{
#define FOR(i, start, end) for(i64 i = (start), CPP_CAT(i,xxxx_end)=(end); i < CPP_CAT(i,xxxx_end); ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(std::begin(cccc), std::end(cccc), ## __VA_ARGS__); })(c))
#define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\
auto iiii = llll <= rrrr ? std::begin(cccc)+llll : std::end(cccc);\
auto jjjj = llll <= rrrr ? std::begin(cccc)+rrrr : std::end(cccc);\
return (f)(iiii, jjjj, ## __VA_ARGS__);\
})(c,l,r))
#define GENERIC(f) ([](auto&&... args) -> decltype(auto) { return (f)(std::forward<decltype(args)>(args)...); })
// ビット演算 {{{
// 2の補数を仮定
// 引数は [-INF,INF] のみ想定
i64 BIT_I(i64 i) {
return 1LL << i;
}
i64 BIT_I_1(i64 i) {
return BIT_I(i) - 1;
}
i64 BIT_GET(i64 x, i64 i) {
return x & BIT_I(i);
}
bool BIT_TEST(i64 x, i64 i) {
return BIT_GET(x,i) != 0;
}
i64 BIT_SET(i64 x, i64 i) {
return x | BIT_I(i);
}
i64 BIT_CLEAR(i64 x, i64 i) {
return x & ~BIT_I(i);
}
i64 BIT_FLIP(i64 x, i64 i) {
return x ^ BIT_I(i);
}
i64 BIT_ASSIGN(i64 x, i64 i, bool b) {
return b ? BIT_SET(x,i) : BIT_CLEAR(x,i);
}
i64 BIT_COUNT_LEADING_ZEROS(i64 x) {
if(x == 0) return 64;
return __builtin_clzll(x);
}
i64 BIT_COUNT_LEADING_ONES(i64 x) {
return BIT_COUNT_LEADING_ZEROS(~x);
}
i64 BIT_COUNT_TRAILING_ZEROS(i64 x) {
if(x == 0) return 64;
return __builtin_ctzll(x);
}
i64 BIT_COUNT_TRAILING_ONES(i64 x) {
return BIT_COUNT_TRAILING_ZEROS(~x);
}
// 末尾へ続く0を識別するマスクを返す (ex. 0b10100 -> 0b00011)
// x=0 なら -1 を返す
i64 BIT_MASK_TRAILING_ZEROS(i64 x) {
return ~x & (x-1);
}
// 末尾へ続く1を識別するマスクを返す (ex. 0b10011 -> 0b00011)
// x=-1 なら -1 を返す
i64 BIT_MASK_TRAILING_ONES(i64 x) {
return x & ~(x+1);
}
i64 BIT_COUNT_ONES(i64 x) {
return __builtin_popcountll(x);
}
i64 BIT_COUNT_ZEROS(i64 x) {
return 64 - BIT_COUNT_ONES(x);
}
// 先頭から続く冗長な符号ビットを数える (ex. 1 -> 62, -1 -> 63)
i64 BIT_COUNT_LEADING_REDUNDANT_SIGN_BITS(i64 x) {
return __builtin_clrsbll(x);
}
// 1の個数が奇数なら1, 偶数なら0を返す
i64 BIT_PARITY(i64 x) {
return __builtin_parityll(x);
}
// 最右の0を分離する (ex. 0b11001 -> 0b00010)
// x=-1 なら 0 を返す
i64 BIT_EXTRACT_FIRST_ZERO(i64 x) {
return ~x & (x+1);
}
// 最右の1を分離する (ex. 0b10110 -> 0b00010)
// x=0 なら 0 を返す
i64 BIT_EXTRACT_FIRST_ONE(i64 x) {
return x & (-x);
}
// 最右の0を1にする (ex. 0b11001 -> 0b11011)
i64 BIT_FLIP_FIRST_ZERO(i64 x) {
return x | (x+1);
}
// 最右の1を0にする (ex. 0b10110 -> 0b10100)
i64 BIT_FLIP_FIRST_ONE(i64 x) {
return x & (x-1);
}
// 最右の1の位置(1-based)を得る
// x=0 なら 0 を返す
i64 BIT_FIND_FIRST_ONE(i64 x) {
return __builtin_ffsll(x);
}
// 最右の0の位置(1-based)を得る
// x=-1 なら 0 を返す
i64 BIT_FIND_FIRST_ZERO(i64 x) {
return BIT_FIND_FIRST_ONE(~x);
}
// 最右の0をそれより右に伝播する (ex. 0b11011 -> 0b11000)
// x=-1 なら -1 を返す
i64 BIT_PROPAGATE_FIRST_ZERO(i64 x) {
if(x == -1) return -1;
return x & (x+1);
}
// 最右の1をそれより右に伝播する (ex. 0b10100 -> 0b10111)
// x=0 なら 0 を返す
i64 BIT_PROPAGATE_FIRST_ONE(i64 x) {
if(x == 0) return 0;
return x | (x-1);
}
// 最右の0および末尾へ続く1を識別するマスクを返す (ex. 0b11011 -> 0b00111)
// x=-1 なら 0 を返す
i64 BIT_MASKTO_FIRST_ZERO(i64 x) {
if(x == -1) return 0;
return x ^ (x+1);
}
// 最右の1および末尾へ続く0を識別するマスクを返す (ex. 0b10100 -> 0b00111)
// x=0 なら 0 を返す
i64 BIT_MASKTO_FIRST_ONE(i64 x) {
if(x == 0) return 0;
return x ^ (x-1);
}
// 最右の連続した0を1にする (ex. 0b101001 -> 0b101111)
// x=-1 なら -1 を返す
i64 BIT_FLIP_FIRST_ZEROS(i64 x) {
return ((x&(x+1))-1) | x;
}
// 最右の連続した1を0にする (ex. 0b10110 -> 0b10000)
// x=0 なら 0 を返す
i64 BIT_FLIP_FIRST_ONES(i64 x) {
return ((x|(x-1))+1) & x;
}
// X ⊆ {0,1,...,n-1}, |X| = k なる部分集合 X を昇順に列挙する
// comb(n,k) 個
//
// ex.
// ```
// i64 x = BIT_I_1(3);
// do {
// // ...
// } while(BIT_NEXT_SET_SIZED(x, 10));
// ```
bool BIT_NEXT_SET_SIZED(i64& x, i64 n) {
if(x == 0) return false;
i64 t = BIT_PROPAGATE_FIRST_ONE(x) + 1;
x = t | (BIT_MASK_TRAILING_ZEROS(t) >> (BIT_COUNT_TRAILING_ZEROS(x)+1));
return x < BIT_I(n);
}
// 集合 Y の部分集合 X を昇順に列挙する
// 2^|Y| 個
//
// ex.
// ```
// i64 y = 0b10101;
// i64 x = 0;
// do {
// // ...
// } while(BIT_NEXT_SUBSET(x, y));
// ```
bool BIT_NEXT_SUBSET(i64& x, i64 y) {
if(x == y) return false;
x = (x-y) & y;
return true;
}
// 集合 Y の部分集合 X を降順に列挙する
// 2^|Y| 個
//
// ex.
// ```
// i64 y = 0b10101;
// i64 x = y;
// do {
// // ...
// } while(BIT_PREV_SUBSET(x, y));
// ```
bool BIT_PREV_SUBSET(i64& x, i64 y) {
if(x == 0) return false;
x = (x-1) & y;
return true;
}
// 集合 Y を包含する集合 X ⊆ {0,1,...,n-1} を昇順に列挙する
// 2^(n-|Y|) 個
//
// ex.
// ```
// i64 y = 0b00010101;
// i64 x = y;
// do {
// // ...
// } while(BIT_NEXT_SUPERSET(x, 8, y));
// ```
bool BIT_NEXT_SUPERSET(i64& x, i64 n, i64 y) {
x = (x+1) | y;
return x < BIT_I(n);
}
// }}}
// BoolArray {{{
class BoolArray {
public:
using value_type = bool;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = value_type*;
using const_iterator = const value_type*;
using difference_type = ptrdiff_t;
using size_type = size_t;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
BoolArray() : BoolArray(0) {}
explicit BoolArray(size_t n) : BoolArray(n,false) {}
BoolArray(size_t n, bool value) : size_(n), data_(new bool[n]) {
ALL(fill, *this, value);
}
BoolArray(initializer_list<bool> init) : size_(init.size()), data_(new bool[size_]) {
ALL(copy, init, begin());
}
template<typename InputIt>
BoolArray(InputIt first, InputIt last) {
deque<bool> tmp(first, last);
size_ = tmp.size();
data_ = new bool[size_];
ALL(copy, tmp, begin());
}
BoolArray(const BoolArray& other) : size_(other.size_), data_(new bool[size_]) {
ALL(copy, other, begin());
}
BoolArray(BoolArray&& other) noexcept : size_(other.size_), data_(other.data_) {
other.data_ = nullptr;
}
BoolArray& operator=(const BoolArray& other) {
if(this == &other) return *this;
if(!data_ || size_ < other.size_) {
delete[] data_;
data_ = new bool[other.size_];
}
size_ = other.size_;
ALL(copy, other, begin());
return *this;
}
BoolArray& operator=(BoolArray&& other) noexcept {
if(this == &other) return *this;
size_ = other.size_;
data_ = other.data_;
other.data_ = nullptr;
return *this;
}
BoolArray& operator=(initializer_list<bool> init) {
if(!data_ || size_ < init.size()) {
delete[] data_;
data_ = new bool[init.size()];
}
size_ = init.size();
ALL(copy, init, begin());
return *this;
}
void swap(BoolArray& other) noexcept {
std::swap(size_, other.size_);
std::swap(data_, other.data_);
}
~BoolArray() {
delete[] data_;
data_ = nullptr;
}
bool empty() const noexcept { return size_ == 0; }
size_type size() const noexcept { return size_; }
size_type max_size() const noexcept { return 1'010'000'000; }
iterator begin() noexcept { return data_; }
const_iterator begin() const noexcept { return data_; }
const_iterator cbegin() const noexcept { return data_; }
iterator end() noexcept { return data_+size_; }
const_iterator end() const noexcept { return data_+size_; }
const_iterator cend() const noexcept { return data_+size_; }
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); }
const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); }
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); }
const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); }
reference operator[](size_type pos) { return data_[pos]; }
const_reference operator[](size_type pos) const { return data_[pos]; }
bool* data() noexcept { return data_; }
const bool* data() const noexcept { return data_; }
private:
size_t size_;
bool* data_;
};
void swap(BoolArray& lhs, BoolArray& rhs) noexcept { lhs.swap(rhs); }
bool operator==(const BoolArray& lhs, const BoolArray& rhs) {
return equal(begin(lhs), end(lhs), begin(rhs), end(rhs));
}
bool operator!=(const BoolArray& lhs, const BoolArray& rhs) { return !(lhs == rhs); }
bool operator<(const BoolArray& lhs, const BoolArray& rhs) {
return lexicographical_compare(begin(lhs), end(lhs), begin(rhs), end(rhs));
}
bool operator> (const BoolArray& lhs, const BoolArray& rhs) { return rhs < lhs; }
bool operator<=(const BoolArray& lhs, const BoolArray& rhs) { return !(rhs < lhs); }
bool operator>=(const BoolArray& lhs, const BoolArray& rhs) { return !(lhs < rhs); }
// }}}
// 多次元 vector {{{
// 最内周が vector<bool> になるのを避けるための措置
template<typename T>
struct Array1Container {
using type = vector<T>;
};
template<>
struct Array1Container<bool> {
using type = BoolArray;
};
// イテレート用
template<typename T>
struct is_arrayn_container {
static constexpr bool value = false;
};
template<typename T>
struct is_arrayn_container<vector<T>> {
static constexpr bool value = true;
};
template<>
struct is_arrayn_container<BoolArray> {
static constexpr bool value = true;
};
template<typename T>
auto arrayn_make(i64 n, T x) {
using Cont = typename Array1Container<T>::type;
return Cont(n, x);
}
template<typename T, typename... Args,
enable_if_t<2 <= sizeof...(Args), nullptr_t> = nullptr>
auto arrayn_make(i64 n, Args... args) {
auto inner = arrayn_make<T>(args...);
return vector<decltype(inner)>(n, inner);
}
template<typename T, typename F>
enable_if_t<!is_arrayn_container<T>::value> arrayn_foreach(T& e, F f) {
f(e);
}
template<typename T, typename F>
enable_if_t<is_arrayn_container<T>::value> arrayn_foreach(T& ary, F f) {
for(auto& e : ary)
arrayn_foreach(e, f);
}
template<typename T, typename U>
enable_if_t<is_arrayn_container<T>::value> arrayn_fill(T& ary, const U& x) {
arrayn_foreach(ary, [&x](auto& e) { e = x; });
}
// }}}
// 多次元生配列 {{{
template<typename T, typename F>
enable_if_t<rank<T>::value==0> CARRAY_FOREACH(T& e, F f) {
f(e);
}
template<typename Array, typename F>
enable_if_t<rank<Array>::value!=0> CARRAY_FOREACH(Array& ary, F f) {
for(auto& e : ary)
CARRAY_FOREACH(e, f);
}
template<typename Array, typename U>
enable_if_t<rank<Array>::value!=0> CARRAY_FILL(Array& ary, const U& v) {
CARRAY_FOREACH(ary, [&v](auto& e) { e = v; });
}
// }}}
// lambda で再帰 {{{
template<typename F>
class FixPoint {
public:
explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {}
template<typename... Args>
constexpr decltype(auto) operator()(Args&&... args) const {
return f_(*this, forward<Args>(args)...);
}
private:
const F f_;
};
template<typename F>
decltype(auto) FIX(F&& f) {
return FixPoint<F>(forward<F>(f));
}
// }}}
// tuple {{{
template<typename... TS,
enable_if_t<0 < sizeof...(TS), nullptr_t> = nullptr>
constexpr auto tuple_head(const tuple<TS...>& t) {
return get<0>(t);
}
template<typename... TS, size_t i, size_t... is>
constexpr auto tuple_tail_helper(const tuple<TS...>& t, index_sequence<i,is...>) {
return make_tuple(get<is>(t)...);
}
template<typename... TS,
enable_if_t<1 == sizeof...(TS), nullptr_t> = nullptr>
constexpr auto tuple_tail(const tuple<TS...>&) {
return make_tuple();
}
template<typename... TS,
enable_if_t<1 < sizeof...(TS), nullptr_t> = nullptr>
constexpr auto tuple_tail(const tuple<TS...>& t) {
return tuple_tail_helper(t, make_index_sequence<sizeof...(TS)>());
}
// }}}
// FST/SND {{{
template<typename T1, typename T2>
T1& FST(pair<T1,T2>& p) {
return p.first;
}
template<typename T1, typename T2>
const T1& FST(const pair<T1,T2>& p) {
return p.first;
}
template<typename T1, typename T2>
T2& SND(pair<T1,T2>& p) {
return p.second;
}
template<typename T1, typename T2>
const T2& SND(const pair<T1,T2>& p) {
return p.second;
}
template<typename... TS, enable_if_t<1 <= sizeof...(TS), nullptr_t> = nullptr>
auto& FST(tuple<TS...>& t) {
return get<0>(t);
}
template<typename... TS, enable_if_t<1 <= sizeof...(TS), nullptr_t> = nullptr>
const auto& FST(const tuple<TS...>& t) {
return get<0>(t);
}
template<typename... TS, enable_if_t<2 <= sizeof...(TS), nullptr_t> = nullptr>
auto& SND(tuple<TS...>& t) {
return get<1>(t);
}
template<typename... TS, enable_if_t<2 <= sizeof...(TS), nullptr_t> = nullptr>
const auto& SND(const tuple<TS...>& t) {
return get<1>(t);
}
// }}}
template<typename T1, typename T2, typename Comp=less<>,
enable_if_t<
is_integral<T1>::value &&
is_integral<T2>::value &&
is_signed<T1>::value != is_unsigned<T2>::value,
nullptr_t
> = nullptr>
common_type_t<T1,T2> MAX(T1 x, T2 y, Comp comp={}) {
return max<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T1, typename T2, typename Comp=less<>,
enable_if_t<
is_floating_point<T1>::value &&
is_floating_point<T2>::value,
nullptr_t
> = nullptr>
common_type_t<T1,T2> MAX(T1 x, T2 y, Comp comp={}) {
return max<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T, typename Comp=less<>>
const T& MAX(const T& x, const T& y, Comp comp={}) {
return max(x, y, comp);
}
template<typename T, typename Comp=less<>>
T MAX(initializer_list<T> ilist, Comp comp={}) {
return max(ilist, comp);
}
template<typename T1, typename T2, typename Comp=less<>,
enable_if_t<
is_integral<T1>::value &&
is_integral<T2>::value &&
is_signed<T1>::value != is_unsigned<T2>::value,
nullptr_t
> = nullptr>
common_type_t<T1,T2> MIN(T1 x, T2 y, Comp comp={}) {
return min<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T1, typename T2, typename Comp=less<>,
enable_if_t<
is_floating_point<T1>::value &&
is_floating_point<T2>::value,
nullptr_t
> = nullptr>
common_type_t<T1,T2> MIN(T1 x, T2 y, Comp comp={}) {
return min<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T, typename Comp=less<>>
const T& MIN(const T& x, const T& y, Comp comp={}) {
return min(x, y, comp);
}
template<typename T, typename Comp=less<>>
T MIN(initializer_list<T> ilist, Comp comp={}) {
return min(ilist, comp);
}
template<typename T>
T ABS(T x) {
static_assert(is_signed<T>::value, "ABS(): argument must be signed");
return x < 0 ? -x : x;
}
template<typename C>
i64 SIZE(const C& c) { return static_cast<i64>(c.size()); }
template<typename T, size_t N>
i64 SIZE(const T (&)[N]) { return static_cast<i64>(N); }
bool is_odd (i64 x) { return x % 2 != 0; }
bool is_even(i64 x) { return x % 2 == 0; }
template<typename T> i64 cmp(T x, T y) { return (y<x) - (x<y); }
template<typename T> i64 sgn(T x) { return cmp(x, T(0)); }
// 事前条件: a >= 0, b >= 0
i64 gcd_impl(i64 a, i64 b) {
if(b == 0) return a;
return gcd_impl(b, a%b);
}
// GCD(0,0) = 0
i64 GCD(i64 a, i64 b) {
return gcd_impl(ABS(a), ABS(b));
}
// LCM(0,x) は未定義
i64 LCM(i64 a, i64 b) {
assert(a != 0 && b != 0);
a = ABS(a);
b = ABS(b);
return a / gcd_impl(a,b) * b;
}
// lo:OK, hi:NG
template<typename Pred>
i64 bisect_integer(i64 lo, i64 hi, Pred pred) {
assert(lo < hi);
while(lo+1 < hi) {
i64 mid = (lo+hi) / 2;
if(pred(mid))
lo = mid;
else
hi = mid;
}
return lo;
}
template<typename Pred>
f64 bisect_real(f64 lo, f64 hi, Pred pred, i64 iter=100) {
assert(lo < hi);
REP(_, iter) {
f64 mid = (lo+hi) / 2;
if(pred(mid))
lo = mid;
else
hi = mid;
}
return lo;
}
i64 ipow(i64 x, i64 e) {
assert(e >= 0);
i64 res = 1;
REP(_, e) {
res *= x;
}
return res;
}
i64 sqrt_floor(i64 x) {
assert(x >= 0);
i64 lo = 0;
i64 hi = MIN(x/2+2, 3037000500LL);
return bisect_integer(lo, hi, [x](i64 r) { return r*r <= x; });
}
i64 sqrt_ceil(i64 x) {
i64 r = sqrt_floor(x);
return r*r == x ? r : r+1;
}
// 0 <= log2_ceil(x) <= 63
i64 log2_ceil(i64 x) {
assert(x > 0);
return 64 - BIT_COUNT_LEADING_ZEROS(x-1);
}
// 0 <= log2_floor(x) <= 62
i64 log2_floor(i64 x) {
assert(x > 0);
return 63 - BIT_COUNT_LEADING_ZEROS(x);
}
// 0 <= log10_ceil(x) <= 19
i64 log10_ceil(i64 x) {
assert(x > 0);
static constexpr i64 TABLE[19] {
1LL,
10LL,
100LL,
1000LL,
10000LL,
100000LL,
1000000LL,
10000000LL,
100000000LL,
1000000000LL,
10000000000LL,
100000000000LL,
1000000000000LL,
10000000000000LL,
100000000000000LL,
1000000000000000LL,
10000000000000000LL,
100000000000000000LL,
1000000000000000000LL,
};
REP(i, SIZE(TABLE)) {
if(x <= TABLE[i]) return i;
}
return SIZE(TABLE);
}
// 0 <= log10_floor(x) <= 18
i64 log10_floor(i64 x) {
assert(x > 0);
static constexpr i64 TABLE[18] {
9LL,
99LL,
999LL,
9999LL,
99999LL,
999999LL,
9999999LL,
99999999LL,
999999999LL,
9999999999LL,
99999999999LL,
999999999999LL,
9999999999999LL,
99999999999999LL,
999999999999999LL,
9999999999999999LL,
99999999999999999LL,
999999999999999999LL,
};
REP(i, SIZE(TABLE)) {
if(x <= TABLE[i]) return i;
}
return SIZE(TABLE);
}
// 2^n - 1 の形かどうか
bool is_mersenne(i64 x) {
assert(x >= 0);
return (x&(x+1)) == 0;
}
bool is_pow2(i64 x) {
assert(x > 0);
return (x&(x-1)) == 0;
}
// x > 0
i64 pow2_ceil(i64 x) {
return BIT_I(log2_ceil(x));
}
// x > 0
i64 pow2_floor(i64 x) {
return BIT_I(log2_floor(x));
}
// Haskell の divMod と同じ
pair<i64,i64> divmod(i64 a, i64 b) {
i64 q = a / b;
i64 r = a % b;
if((b>0 && r<0) || (b<0 && r>0)) {
--q;
r += b;
}
return {q,r};
}
i64 div_ceil(i64 a, i64 b) {
i64 q = a / b;
i64 r = a % b;
if((b>0 && r>0) || (b<0 && r<0))
++q;
return q;
}
i64 div_floor(i64 a, i64 b) {
return divmod(a,b).first;
}
i64 modulo(i64 a, i64 b) {
return divmod(a,b).second;
}
bool feq(f64 x, f64 y, f64 eps=EPS) {
return fabs(x-y) < eps;
}
template<typename T, typename U, typename Comp=less<>>
bool chmax(T& xmax, const U& x, Comp comp={}) {
if(comp(xmax, x)) {
xmax = x;
return true;
}
return false;
}
template<typename T, typename U, typename Comp=less<>>
bool chmin(T& xmin, const U& x, Comp comp={}) {
if(comp(x, xmin)) {
xmin = x;
return true;
}
return false;
}
template<typename InputIt, typename BinaryOp>
auto FOLD(InputIt first, InputIt last,
typename iterator_traits<InputIt>::value_type init,
BinaryOp op)
{
for(; first != last; ++first)
init = op(move(init), *first);
return init;
}
template<typename InputIt, typename BinaryOp>
auto FOLD1(InputIt first, InputIt last, BinaryOp op) {
auto init = *first++;
return FOLD(first, last, init, op);
}
template<typename InputIt>
auto SUM(InputIt first, InputIt last) {
using T = typename iterator_traits<InputIt>::value_type;
return accumulate(first, last, T());
}
template<typename ForwardIt, typename UnaryOperation>
ForwardIt transform_self(ForwardIt first, ForwardIt last, UnaryOperation op) {
return transform(first, last, first, op);
}
template<typename C>
void UNIQ(C& c) {
c.erase(ALL(unique,c), end(c));
}
template<typename BinaryFunc>
auto FLIP(BinaryFunc f) {
return [f](const auto& x, const auto& y) {
return f(y,x);
};
}
template<typename BinaryFunc, typename UnaryFunc>
auto ON(BinaryFunc bf, UnaryFunc uf) {
return [bf,uf](const auto& x, const auto& y) {
return bf(uf(x), uf(y));
};
}
template<typename F>
auto LT_ON(F f) { return ON(less<>(), f); }
template<typename F>
auto GT_ON(F f) { return ON(greater<>(), f); }
template<typename F>
auto EQ_ON(F f) { return ON(equal_to<>(), f); }
template<typename F>
auto NE_ON(F f) { return ON(not_equal_to<>(), f); }
template<typename Comp=less<>>
auto EQUIV(Comp comp={}) {
return [comp](const auto& lhs, const auto& rhs) {
return !comp(lhs,rhs) && !comp(rhs,lhs);
};
}
struct IDENTITY {
using is_transparent = void;
template<typename T>
constexpr T&& operator()(T&& x) const noexcept {
return forward<T>(x);
}
};
template<typename T=void>
struct OpMax {
using result_type = T;
using first_argument_type = T;
using second_argument_type = T;
T operator()(const T& x, const T& y) const {
return MAX(x, y);
}
};
template<>
struct OpMax<void> {
using is_transparent = void;
template<typename T1, typename T2>
auto operator()(T1&& x, T2&& y) const {
return MAX(forward<T1>(x), forward<T2>(y));
}
};
template<typename T=void>
struct OpMin {
using result_type = T;
using first_argument_type = T;
using second_argument_type = T;
T operator()(const T& x, const T& y) const {
return MIN(x, y);
}
};
template<>
struct OpMin<void> {
using is_transparent = void;
template<typename T1, typename T2>
auto operator()(T1&& x, T2&& y) const {
return MIN(forward<T1>(x), forward<T2>(y));
}
};
template<typename T=void>
struct OpGcd {
using result_type = T;
using first_argument_type = T;
using second_argument_type = T;
T operator()(const T& x, const T& y) const {
return GCD(x, y);
}
};
template<>
struct OpGcd<void> {
using is_transparent = void;
template<typename T1, typename T2>
auto operator()(T1&& x, T2&& y) const {
return GCD(forward<T1>(x), forward<T2>(y));
}
};
template<typename T=void>
struct OpLcm {
using result_type = T;
using first_argument_type = T;
using second_argument_type = T;
T operator()(const T& x, const T& y) const {
return LCM(x, y);
}
};
template<>
struct OpLcm<void> {
using is_transparent = void;
template<typename T1, typename T2>
auto operator()(T1&& x, T2&& y) const {
return LCM(forward<T1>(x), forward<T2>(y));
}
};
template<typename ForwardIt>
ForwardIt next_bounded(ForwardIt last, ForwardIt it, i64 n=1) {
auto bound = distance(it, last);
return next(it, MIN(n, bound));
}
template<typename ForwardIt>
ForwardIt prev_bounded(ForwardIt first, ForwardIt it, i64 n=1) {
auto bound = distance(first, it);
return prev(it, MIN(n, bound));
}
template<typename ForwardIt>
void advance_bounded(ForwardIt first, ForwardIt last, ForwardIt& it, i64 n) {
if(n > 0) {
auto bound = distance(it, last);
advance(it, MIN(n, bound));
}
else if(n < 0) {
auto bound = distance(it, first);
advance(it, MAX(n, bound));
}
}
char digit_chr(i64 n) {
return static_cast<char>('0' + n);
}
i64 digit_ord(char c) {
return c - '0';
}
char lower_chr(i64 n) {
return static_cast<char>('a' + n);
}
i64 lower_ord(char c) {
return c - 'a';
}
char upper_chr(i64 n) {
return static_cast<char>('A' + n);
}
i64 upper_ord(char c) {
return c - 'A';
}
// 出力は operator<< を直接使わず、このテンプレート経由で行う
// 提出用出力とデバッグ用出力を分けるため
template<typename T, typename Enable=void>
struct Formatter {
static ostream& write_str(ostream& out, const T& x) { return out << x; }
static ostream& write_repr(ostream& out, const T& x) { return out << x; }
};
template<typename T>
ostream& WRITE_STR(ostream& out, const T& x) {
return Formatter<T>::write_str(out, x);
}
template<typename T>
ostream& WRITE_REPR(ostream& out, const T& x) {
return Formatter<T>::write_repr(out, x);
}
template<typename InputIt>
ostream& WRITE_JOIN_STR(ostream& out, InputIt first, InputIt last, const string& sep) {
while(first != last) {
WRITE_STR(out, *first++);
if(first != last)
out << sep;
}
return out;
}
template<typename InputIt>
ostream& WRITE_JOIN_REPR(ostream& out, InputIt first, InputIt last, const string& sep) {
while(first != last) {
WRITE_REPR(out, *first++);
if(first != last)
out << sep;
}
return out;
}
template<typename InputIt>
ostream& WRITE_RANGE_STR(ostream& out, InputIt first, InputIt last) {
return WRITE_JOIN_STR(out, first, last, " ");
}
template<typename InputIt>
ostream& WRITE_RANGE_REPR(ostream& out, InputIt first, InputIt last) {
out << "[";
WRITE_JOIN_REPR(out, first, last, ", ");
out << "]";
return out;
}
template<typename T>
void FROM_STR(const string& s, T& x) {
istringstream in(s);
in >> x;
}
template<typename T>
string TO_STR(const T& x) {
ostringstream out;
WRITE_STR(out, x);
return out.str();
}
template<typename T>
string TO_REPR(const T& x) {
ostringstream out;
WRITE_REPR(out, x);
return out.str();
}
template<typename InputIt>
string RANGE_TO_STR(InputIt first, InputIt last) {
ostringstream out;
WRITE_RANGE_STR(out, first, last);
return out.str();
}
template<typename InputIt>
string RANGE_TO_REPR(InputIt first, InputIt last) {
ostringstream out;
WRITE_RANGE_REPR(out, first, last);
return out.str();
}
template<typename InputIt>
string JOIN(InputIt first, InputIt last, const string& sep) {
ostringstream out;
WRITE_JOIN_STR(out, first, last, sep);
return out.str();
}
template<>
struct Formatter<i64> {
static ostream& write_str(ostream& out, i64 x) {
return out << x;
}
static ostream& write_repr(ostream& out, i64 x) {
if(x == INF) return out << "INF";
if(x == -INF) return out << "-INF";
return out << x;
}
};
template<>
struct Formatter<f64> {
static ostream& write_str(ostream& out, f64 x) {
return out << x;
}
static ostream& write_repr(ostream& out, f64 x) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
if(x == FINF) return out << "FINF";
if(x == -FINF) return out << "-FINF";
#pragma GCC diagnostic pop
return out << x;
}
};
template<typename Enum>
struct Formatter<Enum, enable_if_t<is_enum<Enum>::value>> {
static ostream& write_str(ostream& out, Enum x) {
return WRITE_STR(out, static_cast<underlying_type_t<Enum>>(x));
}
static ostream& write_repr(ostream& out, Enum x) {
return WRITE_REPR(out, static_cast<underlying_type_t<Enum>>(x));
}
};
template<typename T>
struct Formatter<vector<T>> {
static ostream& write_str(ostream& out, const vector<T>& v) {
return WRITE_RANGE_STR(out, begin(v), end(v));
}
static ostream& write_repr(ostream& out, const vector<T>& v) {
out << "vector";
return WRITE_RANGE_REPR(out, begin(v), end(v));
}
};
template<>
struct Formatter<BoolArray> {
static ostream& write_str(ostream& out, const BoolArray& a) {
return WRITE_RANGE_STR(out, begin(a), end(a));
}
static ostream& write_repr(ostream& out, const BoolArray& a) {
out << "BoolArray";
return WRITE_RANGE_REPR(out, begin(a), end(a));
}
};
template<typename T1, typename T2>
struct Formatter<pair<T1,T2>> {
static ostream& write_str(ostream& out, const pair<T1,T2>& p) {
WRITE_STR(out, p.first);
out << ' ';
WRITE_STR(out, p.second);
return out;
}
static ostream& write_repr(ostream& out, const pair<T1,T2>& p) {
out << "(";
WRITE_REPR(out, p.first);
out << ",";
WRITE_REPR(out, p.second);
out << ")";
return out;
}
};
template<typename... TS>
struct Formatter<tuple<TS...>> {
template<size_t I=0, enable_if_t<I == sizeof...(TS), nullptr_t> = nullptr>
static ostream& write_str_impl(ostream& out, const tuple<TS...>&) {
return out;
}
template<size_t I=0, enable_if_t<I < sizeof...(TS), nullptr_t> = nullptr>
static ostream& write_str_impl(ostream& out, const tuple<TS...>& t) {
if(I != 0) out << ' ';
WRITE_STR(out, get<I>(t));
return write_str_impl<I+1>(out, t);
}
template<size_t I=0, enable_if_t<I == sizeof...(TS), nullptr_t> = nullptr>
static ostream& write_repr_impl(ostream& out, const tuple<TS...>&) {
if(sizeof...(TS) == 0) out << "(";
return out << ")";
}
template<size_t I=0, enable_if_t<I < sizeof...(TS), nullptr_t> = nullptr>
static ostream& write_repr_impl(ostream& out, const tuple<TS...>& t) {
if(I == 0)
out << "(";
else
out << ",";
WRITE_REPR(out, get<I>(t));
return write_repr_impl<I+1>(out, t);
}
static ostream& write_str(ostream& out, const tuple<TS...>& t) {
return write_str_impl(out, t);
}
static ostream& write_repr(ostream& out, const tuple<TS...>& t) {
return write_repr_impl(out, t);
}
};
template<typename T>
void RD(T& x) {
cin >> x;
#ifdef PROCON_LOCAL
assert(cin);
#endif
}
template<typename T>
void RD1(T& x) {
RD(x);
--x;
}
template<typename T>
auto RD_ARRAY(i64 n) {
auto res = arrayn_make<T>(n, T());
arrayn_foreach(res, [](T& e) { RD(e); });
return res;
}
template<typename T>
auto RD1_ARRAY(i64 n) {
auto res = arrayn_make<T>(n, T());
arrayn_foreach(res, [](T& e) { RD1(e); });
return res;
}
template<typename T>
auto RD_ARRAY2(i64 h, i64 w) {
auto res = arrayn_make<T>(h,w, T());
arrayn_foreach(res, [](T& e) { RD(e); });
return res;
}
template<typename T>
auto RD1_ARRAY2(i64 h, i64 w) {
auto res = arrayn_make<T>(h,w, T());
arrayn_foreach(res, [](T& e) { RD1(e); });
return res;
}
template<typename T1, typename T2>
pair<T1,T2> RD_PAIR() {
T1 x; RD(x);
T2 y; RD(y);
return { x, y };
}
template<typename T1, typename T2>
pair<T1,T2> RD1_PAIR() {
T1 x; RD1(x);
T2 y; RD1(y);
return { x, y };
}
template<typename... TS,
enable_if_t<0 == sizeof...(TS), nullptr_t> = nullptr>
auto RD_TUPLE() {
return make_tuple();
}
template<typename T, typename... TS>
auto RD_TUPLE() {
T x; RD(x);
return tuple_cat(make_tuple(x), RD_TUPLE<TS...>());
}
template<typename... TS,
enable_if_t<0 == sizeof...(TS), nullptr_t> = nullptr>
auto RD1_TUPLE() {
return make_tuple();
}
template<typename T, typename... TS>
auto RD1_TUPLE() {
T x; RD1(x);
return tuple_cat(make_tuple(x), RD_TUPLE<TS...>());
}
void PRINT() {}
template<typename T, typename... TS>
void PRINT(const T& x, const TS& ...args) {
WRITE_STR(cout, x);
if(sizeof...(args)) {
cout << ' ';
PRINT(args...);
}
}
template<typename... TS>
void PRINTLN(const TS& ...args) {
PRINT(args...);
cout << '\n';
}
[[noreturn]] void EXIT() {
cout.flush();
#ifdef PROCON_LOCAL
cerr.flush();
exit(0);
#else
_Exit(0);
#endif
}
template<typename... TS, enable_if_t<1 == sizeof...(TS), nullptr_t> = nullptr>
void DBG_IMPL(i64 line, const char* expr, const tuple<TS...>& value) {
#ifdef PROCON_LOCAL
cerr << "[L " << line << "]: ";
cerr << expr << " = ";
WRITE_REPR(cerr, get<0>(value));
cerr << "\n";
#endif
}
template<typename... TS, enable_if_t<2 <= sizeof...(TS), nullptr_t> = nullptr>
void DBG_IMPL(i64 line, const char* expr, const tuple<TS...>& value) {
#ifdef PROCON_LOCAL
cerr << "[L " << line << "]: ";
cerr << "(" << expr << ") = ";
WRITE_REPR(cerr, value);
cerr << "\n";
#endif
}
template<typename T, size_t N>
void DBG_CARRAY_IMPL(i64 line, const char* expr, const T (&ary)[N]) {
#ifdef PROCON_LOCAL
cerr << "[L " << line << "]: ";
cerr << expr << " = ";
WRITE_RANGE_REPR(cerr, begin(ary), end(ary));
cerr << "\n";
#endif
}
template<typename InputIt>
void DBG_RANGE_IMPL(i64 line, const char* expr1, const char* expr2, InputIt first, InputIt last) {
#ifdef PROCON_LOCAL
cerr << "[L " << line << "]: ";
cerr << expr1 << "," << expr2 << " = ";
WRITE_RANGE_REPR(cerr, first, last);
cerr << "\n";
#endif
}
#define DBG(args...) DBG_IMPL(__LINE__, CPP_STR_I(args), make_tuple(args))
#define DBG_CARRAY(expr) DBG_CARRAY_IMPL(__LINE__, CPP_STR(expr), (expr))
#define DBG_RANGE(first,last) DBG_RANGE_IMPL(__LINE__, CPP_STR(first), CPP_STR(last), (first), (last))
#define PAIR make_pair
#define TUPLE make_tuple
// }}}
// init {{{
struct ProconInit {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
ProconInit() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(IOS_PREC);
#ifdef PROCON_LOCAL
cerr << fixed << setprecision(IOS_PREC);
#endif
if(AUTOFLUSH)
cout << unitbuf;
}
} PROCON_INIT;
// }}}
// container {{{
// hash {{{
template<typename T>
struct procon_hash {
size_t operator()(const T& x) const {
return hash<T>()(x);
}
};
template<typename T>
size_t procon_hash_value(const T& x) {
return procon_hash<T>()(x);
}
template<typename T>
void procon_hash_combine(size_t& seed, const T& x) {
seed ^= procon_hash_value(x) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
template<typename InputIt>
void procon_hash_range(size_t& seed, InputIt first, InputIt last) {
for(; first != last; ++first)
procon_hash_combine(seed, *first);
}
template<typename InputIt>
size_t procon_hash_range(InputIt first, InputIt last) {
size_t seed = 0;
procon_hash_range(seed, first, last);
return seed;
}
template<typename... TS, enable_if_t<0 == sizeof...(TS), nullptr_t> = nullptr>
void procon_hash_tuple(size_t&, const tuple<TS...>&) {}
template<typename... TS, enable_if_t<0 < sizeof...(TS), nullptr_t> = nullptr>
void procon_hash_tuple(size_t& seed, const tuple<TS...>& t) {
procon_hash_combine(seed, tuple_head(t));
procon_hash_tuple(seed, tuple_tail(t));
}
template<typename T>
struct procon_hash<vector<T>> {
size_t operator()(const vector<T>& v) const {
return ALL(procon_hash_range, v);
}
};
template<typename T1, typename T2>
struct procon_hash<pair<T1,T2>> {
size_t operator()(const pair<T1,T2>& p) const {
size_t seed = 0;
procon_hash_combine(seed, p.first);
procon_hash_combine(seed, p.second);
return seed;
}
};
template<typename... TS>
struct procon_hash<tuple<TS...>> {
size_t operator()(const tuple<TS...>& t) const {
size_t seed = 0;
procon_hash_tuple(seed, t);
return seed;
}
};
template<typename T, typename Eq=equal_to<T>>
using HashSet = unordered_set<T,procon_hash<T>,Eq>;
template<typename K, typename V, typename Eq=equal_to<K>>
using HashMap = unordered_map<K,V,procon_hash<K>,Eq>;
template<typename T, typename Eq=equal_to<T>>
using HashMultiset = unordered_multiset<T,procon_hash<T>,Eq>;
template<typename K, typename V, typename Eq=equal_to<K>>
using HashMultimap = unordered_multimap<K,V,procon_hash<K>,Eq>;
// }}}
template<typename T>
using MaxHeap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using MinHeap = priority_queue<T, vector<T>, greater<T>>;
template<typename T, typename Comp>
bool set_contains(const set<T,Comp>& s, const typename set<T,Comp>::key_type& x) {
return s.find(x) != end(s);
}
template<typename T, typename Hash, typename Eq>
bool set_contains(const unordered_set<T,Hash,Eq>& s, const typename unordered_set<T,Hash,Eq>::key_type& x) {
return s.find(x) != end(s);
}
template<typename T, typename Comp>
bool set_contains(const multiset<T,Comp>& s, const typename multiset<T,Comp>::key_type& x) {
return s.find(x) != end(s);
}
template<typename T, typename Hash, typename Eq>
bool set_contains(const unordered_multiset<T,Hash,Eq>& s, const typename unordered_multiset<T,Hash,Eq>::key_type& x) {
return s.find(x) != end(s);
}
template<typename K, typename V, typename Comp>
bool map_contains(const map<K,V,Comp>& m, const typename map<K,V,Comp>::key_type& k) {
return m.find(k) != end(m);
}
template<typename K, typename V, typename Hash, typename Eq>
bool map_contains(const unordered_map<K,V,Hash,Eq>& m, const typename unordered_map<K,V,Hash,Eq>::key_type& k) {
return m.find(k) != end(m);
}
template<typename K, typename V, typename Comp>
bool map_contains(const multimap<K,V,Comp>& m, const typename map<K,V,Comp>::key_type& k) {
return m.find(k) != end(m);
}
template<typename K, typename V, typename Hash, typename Eq>
bool map_contains(const unordered_multimap<K,V,Hash,Eq>& m, const typename unordered_map<K,V,Hash,Eq>::key_type& k) {
return m.find(k) != end(m);
}
template<typename K, typename Comp>
bool multiset_erase_one(multiset<K,Comp>& m, const typename multiset<K,Comp>::key_type& k) {
auto it = m.find(k);
if(it == end(m)) return false;
m.erase(it);
return true;
}
template<typename K, typename Hash, typename Eq>
bool multiset_erase_one(unordered_multiset<K,Hash,Eq>& m, const typename unordered_multiset<K,Hash,Eq>::key_type& k) {
auto it = m.find(k);
if(it == end(m)) return false;
m.erase(it);
return true;
}
// POP() 系 {{{
// 効率は悪い
template<typename T>
T POP_FRONT(vector<T>& v) {
T x = v.front(); v.erase(begin(v));
return x;
}
template<typename T>
T POP_BACK(vector<T>& v) {
T x = v.back(); v.pop_back();
return x;
}
template<typename T>
T POP_FRONT(deque<T>& v) {
T x = v.front(); v.pop_front();
return x;
}
template<typename T>
T POP_BACK(deque<T>& v) {
T x = v.back(); v.pop_back();
return x;
}
template<typename T>
T POP_FRONT(forward_list<T>& ls) {
T x = ls.front(); ls.pop_front();
return x;
}
template<typename T>
T POP_FRONT(list<T>& ls) {
T x = ls.front(); ls.pop_front();
return x;
}
template<typename T>
T POP_BACK(list<T>& ls) {
T x = ls.back(); ls.pop_back();
return x;
}
template<typename T, typename C>
T POP(stack<T,C>& stk) {
T x = stk.top(); stk.pop();
return x;
}
template<typename T, typename C>
T POP(queue<T,C>& que) {
T x = que.front(); que.pop();
return x;
}
template<typename T, typename C, typename Comp>
T POP(priority_queue<T,C,Comp>& que) {
T x = que.top(); que.pop();
return x;
}
// }}}
// bimap {{{
template<typename T1, typename T2>
struct BiHashMap {
HashMap<T1,T2> fwd_;
HashMap<T2,T1> rev_;
void insert(const T1& x, const T2& y) {
auto it_fwd = fwd_.find(x);
if(it_fwd == end(fwd_)) {
fwd_.insert(it_fwd, make_pair(x,y));
rev_.insert(end(rev_), make_pair(y,x));
}
else {
assert(y == it_fwd->second);
}
}
bool contains_fwd(const T1& x) const {
return map_contains(fwd_, x);
}
bool contains_rev(const T2& y) const {
return map_contains(rev_, y);
}
const T2& at_fwd(const T1& x) const {
auto it = fwd_.find(x);
assert(it != end(fwd_));
return it->second;
}
const T1& at_rev(const T2& y) const {
auto it = rev_.find(y);
assert(it != end(rev_));
return it->second;
}
size_t size() const { return fwd_.size(); }
};
// }}}
// Formatter {{{
template<typename T, size_t N>
struct Formatter<array<T,N>> {
static ostream& write_str(ostream& out, const array<T,N>& a) {
return WRITE_RANGE_STR(out, begin(a), end(a));
}
static ostream& write_repr(ostream& out, const array<T,N>& a) {
out << "array";
return WRITE_RANGE_REPR(out, begin(a), end(a));
}
};
template<typename T>
struct Formatter<deque<T>> {
static ostream& write_str(ostream& out, const deque<T>& deq) {
return WRITE_RANGE_STR(out, begin(deq), end(deq));
}
static ostream& write_repr(ostream& out, const deque<T>& deq) {
out << "deque";
return WRITE_RANGE_REPR(out, begin(deq), end(deq));
}
};
template<typename T>
struct Formatter<forward_list<T>> {
static ostream& write_str(ostream& out, const forward_list<T>& ls) {
return WRITE_RANGE_STR(out, begin(ls), end(ls));
}
static ostream& write_repr(ostream& out, const forward_list<T>& ls) {
out << "forward_list";
return WRITE_RANGE_REPR(out, begin(ls), end(ls));
}
};
template<typename T>
struct Formatter<list<T>> {
static ostream& write_str(ostream& out, const list<T>& ls) {
return WRITE_RANGE_STR(out, begin(ls), end(ls));
}
static ostream& write_repr(ostream& out, const list<T>& ls) {
out << "list";
return WRITE_RANGE_REPR(out, begin(ls), end(ls));
}
};
template<typename T, typename Comp>
struct Formatter<set<T,Comp>> {
static ostream& write_str(ostream& out, const set<T,Comp>& s) {
return WRITE_RANGE_STR(out, begin(s), end(s));
}
static ostream& write_repr(ostream& out, const set<T,Comp>& s) {
out << "set";
return WRITE_RANGE_REPR(out, begin(s), end(s));
}
};
template<typename T, typename Comp>
struct Formatter<multiset<T,Comp>> {
static ostream& write_str(ostream& out, const multiset<T,Comp>& s) {
return WRITE_RANGE_STR(out, begin(s), end(s));
}
static ostream& write_repr(ostream& out, const multiset<T,Comp>& s) {
out << "multiset";
return WRITE_RANGE_REPR(out, begin(s), end(s));
}
};
template<typename T, typename Hash, typename Eq>
struct Formatter<unordered_set<T,Hash,Eq>> {
static ostream& write_str(ostream& out, const unordered_set<T,Hash,Eq>& s) {
return WRITE_RANGE_STR(out, begin(s), end(s));
}
static ostream& write_repr(ostream& out, const unordered_set<T,Hash,Eq>& s) {
out << "unordered_set";
return WRITE_RANGE_REPR(out, begin(s), end(s));
}
};
template<typename T, typename Hash, typename Eq>
struct Formatter<unordered_multiset<T,Hash,Eq>> {
static ostream& write_str(ostream& out, const unordered_multiset<T,Hash,Eq>& s) {
return WRITE_RANGE_STR(out, begin(s), end(s));
}
static ostream& write_repr(ostream& out, const unordered_multiset<T,Hash,Eq>& s) {
out << "unordered_multiset";
return WRITE_RANGE_REPR(out, begin(s), end(s));
}
};
template<typename K, typename V, typename Comp>
struct Formatter<map<K,V,Comp>> {
static ostream& write_str(ostream& out, const map<K,V,Comp>& m) {
return WRITE_RANGE_STR(out, begin(m), end(m));
}
static ostream& write_repr(ostream& out, const map<K,V,Comp>& m) {
out << "map";
return WRITE_RANGE_REPR(out, begin(m), end(m));
}
};
template<typename K, typename V, typename Comp>
struct Formatter<multimap<K,V,Comp>> {
static ostream& write_str(ostream& out, const multimap<K,V,Comp>& m) {
return WRITE_RANGE_STR(out, begin(m), end(m));
}
static ostream& write_repr(ostream& out, const multimap<K,V,Comp>& m) {
out << "multimap";
return WRITE_RANGE_REPR(out, begin(m), end(m));
}
};
template<typename K, typename V, typename Hash, typename Eq>
struct Formatter<unordered_map<K,V,Hash,Eq>> {
static ostream& write_str(ostream& out, const unordered_map<K,V,Hash,Eq>& m) {
return WRITE_RANGE_STR(out, begin(m), end(m));
}
static ostream& write_repr(ostream& out, const unordered_map<K,V,Hash,Eq>& m) {
out << "unordered_map";
return WRITE_RANGE_REPR(out, begin(m), end(m));
}
};
template<typename K, typename V, typename Hash, typename Eq>
struct Formatter<unordered_multimap<K,V,Hash,Eq>> {
static ostream& write_str(ostream& out, const unordered_multimap<K,V,Hash,Eq>& m) {
return WRITE_RANGE_STR(out, begin(m), end(m));
}
static ostream& write_repr(ostream& out, const unordered_multimap<K,V,Hash,Eq>& m) {
out << "unordered_multimap";
return WRITE_RANGE_REPR(out, begin(m), end(m));
}
};
template<typename T, typename C>
struct Formatter<stack<T,C>> {
static ostream& write_str(ostream& out, const stack<T,C>& orig) {
stack<T,C> stk(orig);
while(!stk.empty()) {
WRITE_STR(out, stk.top()); stk.pop();
if(!stk.empty()) out << ' ';
}
return out;
}
static ostream& write_repr(ostream& out, const stack<T,C>& orig) {
stack<T,C> stk(orig);
out << "stack[";
while(!stk.empty()) {
WRITE_REPR(out, stk.top()); stk.pop();
if(!stk.empty()) out << ", ";
}
out << "]";
return out;
}
};
template<typename T, typename C>
struct Formatter<queue<T,C>> {
static ostream& write_str(ostream& out, const queue<T,C>& orig) {
queue<T,C> que(orig);
while(!que.empty()) {
WRITE_STR(out, que.front()); que.pop();
if(!que.empty()) out << ' ';
}
return out;
}
static ostream& write_repr(ostream& out, const queue<T,C>& orig) {
queue<T,C> que(orig);
out << "queue[";
while(!que.empty()) {
WRITE_REPR(out, que.front()); que.pop();
if(!que.empty()) out << ", ";
}
out << "]";
return out;
}
};
template<typename T, typename C, typename Comp>
struct Formatter<priority_queue<T,C,Comp>> {
static ostream& write_str(ostream& out, const priority_queue<T,C,Comp>& orig) {
priority_queue<T,C,Comp> que(orig);
while(!que.empty()) {
WRITE_STR(out, que.top()); que.pop();
if(!que.empty()) out << ' ';
}
return out;
}
static ostream& write_repr(ostream& out, const priority_queue<T,C,Comp>& orig) {
priority_queue<T,C,Comp> que(orig);
out << "priority_queue[";
while(!que.empty()) {
WRITE_REPR(out, que.top()); que.pop();
if(!que.empty()) out << ", ";
}
out << "]";
return out;
}
};
// }}}
// }}}
// num {{{
// 事前条件: a >= 0, b >= 0
i64 extgcd_impl(i64 a, i64 b, i64& x, i64& y) {
if(b == 0) {
x = 1; y = 0;
return a;
}
i64 g = extgcd_impl(b, a%b, y, x);
y -= a/b * x;
return g;
}
// g=gcd(a,b), および ax+by=g の整数解 (x0,y0) を求める
// (g,x0,y0) を返す
// g!=0 のとき、一般解は (x,y) = (x0+m*b/g, y0-m*a/g) で与えられる(mは整数)
tuple<i64,i64,i64> extgcd(i64 a, i64 b) {
i64 x, y;
i64 g = extgcd_impl(ABS(a), ABS(b), x, y);
x *= sgn(a);
y *= sgn(b);
return make_tuple(g, x, y);
}
vector<i64> divisors_proper(i64 n) {
if(n == 1) return {};
vector<i64> res(1, 1);
i64 d = 2;
for(; d*d < n; ++d) {
if(n % d == 0) {
res.emplace_back(d);
res.emplace_back(n/d);
}
}
if(d*d == n)
res.emplace_back(d);
return res;
}
vector<i64> divisors(i64 n) {
vector<i64> res = divisors_proper(n);
res.emplace_back(n);
return res;
}
// 素因数分解
// (素因数,指数) のリストを返す
// n >= 1 でなければならない
// n == 1 の場合、空リストを返す
vector<pair<i64,i64>> factorize(i64 n) {
assert(n >= 1);
vector<pair<i64,i64>> res;
i64 m = n;
for(i64 i = 2; i*i <= n; ++i) {
if(m == 1) break;
i64 e = 0;
while(m % i == 0) {
++e;
m /= i;
}
if(e) res.emplace_back(i, e);
}
if(m > 1) res.emplace_back(m, 1);
return res;
}
bool is_square(i64 x) {
i64 r = sqrt_floor(x);
return r*r == x;
}
// Miller-Rabin 法
//
// 参考: http://miller-rabin.appspot.com/
bool is_prime_u32(u32 n) {
static constexpr u32 AS[] {
2,
7,
61,
};
static const auto mulmod32 = [](u32 a, u32 b, u32 m) -> u32 {
u64 res = a;
res *= b;
res %= m;
return static_cast<u32>(res);
};
static const auto powmod32 = [](u32 a, u32 b, u32 m) -> u32 {
u32 res = 1;
while(b > 0) {
if(b & 1)
res = mulmod32(res, a, m);
a = mulmod32(a, a, m);
b >>= 1;
}
return res;
};
if(n <= 1) return false;
if(n == 2) return true;
if(n % 2 == 0) return false;
u32 d = n-1;
u32 s = __builtin_ctz(d);
d >>= s;
for(u32 a : AS) {
if(a >= n) a %= n;
if(a == 0) continue;
u32 x = powmod32(a, d, n);
if(x == 1 || x == n-1) continue;
u32 r;
for(r = 1; r < s; ++r) {
x = mulmod32(x, x, n);
if(x == 1) return false;
if(x == n-1) break;
}
if(r == s) return false;
}
return true;
}
bool is_prime_u64(u64 n) {
static constexpr u64 AS[] {
2,
325,
9375,
28178,
450775,
9780504,
1795265022,
};
static const auto mulmod64 = [](u64 a, u64 b, u64 m) -> u64 {
u128 res = a;
res *= b;
res %= m;
return static_cast<u64>(res);
};
static const auto powmod64 = [](u64 a, u64 b, u64 m) -> u64 {
u64 res = 1;
while(b > 0) {
if(b & 1)
res = mulmod64(res, a, m);
a = mulmod64(a, a, m);
b >>= 1;
}
return res;
};
if(n <= numeric_limits<u32>::max()) return is_prime_u32(static_cast<u32>(n));
if(n % 2 == 0) return false;
u64 d = n-1;
u64 s = __builtin_ctzll(d);
d >>= s;
for(u64 a : AS) {
if(a >= n) a %= n;
if(a == 0) continue;
u64 x = powmod64(a, d, n);
if(x == 1 || x == n-1) continue;
u64 r;
for(r = 1; r < s; ++r) {
x = mulmod64(x, x, n);
if(x == 1) return false;
if(x == n-1) break;
}
if(r == s) return false;
}
return true;
}
bool is_prime(i64 n) {
assert(n >= 0);
return is_prime_u64(static_cast<u64>(n));
}
// 二分累乗
template<typename Monoid>
Monoid pow_binary(Monoid x, i64 e) {
assert(e >= 0);
Monoid res(1); // 行列などの場合はここを適当に変える
Monoid cur = x;
while(e > 0) {
if(e & 1)
res *= cur;
cur *= cur;
e >>= 1;
}
return res;
}
// mod m での a の逆元
// a ⊥ m でなければならない
i64 inv_mod(i64 a, i64 m) {
i64 g,x0; tie(g,x0,ignore) = extgcd(a, m);
assert(g == 1);
return modulo(x0, m);
}
template<i64 P>
struct ModPT {
static_assert(P >= 2, "P must be a prime");
i64 v_; // [0,P)
ModPT() : v_(0) {}
ModPT(i64 v) : v_(modulo(v,P)) {}
ModPT operator-() const {
return ModPT(-v_);
}
ModPT& operator+=(ModPT rhs) {
v_ += rhs.v_;
v_ %= P;
return *this;
}
ModPT& operator-=(ModPT rhs) {
v_ += P;
v_ -= rhs.v_;
v_ %= P;
return *this;
}
ModPT& operator*=(ModPT rhs) {
v_ *= rhs.v_;
v_ %= P;
return *this;
}
ModPT& operator++() {
return *this += 1;
}
ModPT& operator--() {
return *this -= 1;
}
ModPT operator++(int) {
ModPT res(*this);
++*this;
return res;
}
ModPT operator--(int) {
ModPT res(*this);
--*this;
return res;
}
explicit operator i64() const { return v_; }
ModPT inv() const {
return ModPT(inv_mod(v_,P));
}
};
template<i64 P>
ModPT<P> operator+(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) += rhs; }
template<i64 P>
ModPT<P> operator+(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) += rhs; }
template<i64 P>
ModPT<P> operator+(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) += lhs; }
template<i64 P>
ModPT<P> operator-(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) -= rhs; }
template<i64 P>
ModPT<P> operator-(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) -= rhs; }
template<i64 P>
ModPT<P> operator-(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) -= lhs; }
template<i64 P>
ModPT<P> operator*(ModPT<P> lhs, ModPT<P> rhs) { return ModPT<P>(lhs) *= rhs; }
template<i64 P>
ModPT<P> operator*(ModPT<P> lhs, i64 rhs) { return ModPT<P>(lhs) *= rhs; }
template<i64 P>
ModPT<P> operator*(i64 lhs, ModPT<P> rhs) { return ModPT<P>(rhs) *= lhs; }
template<i64 P>
bool operator==(ModPT<P> lhs, ModPT<P> rhs) { return lhs.v_ == rhs.v_; }
template<i64 P>
bool operator==(ModPT<P> lhs, i64 rhs) { return lhs == ModPT<P>(rhs); }
template<i64 P>
bool operator==(i64 lhs, ModPT<P> rhs) { return ModPT<P>(lhs) == rhs; }
template<i64 P>
bool operator!=(ModPT<P> lhs, ModPT<P> rhs) { return !(lhs == rhs); }
template<i64 P>
bool operator!=(ModPT<P> lhs, i64 rhs) { return !(lhs == rhs); }
template<i64 P>
bool operator!=(i64 lhs, ModPT<P> rhs) { return !(lhs == rhs); }
template<i64 P>
istream& operator>>(istream& in, ModPT<P>& x) {
i64 t; in >> t;
x = t;
return in;
}
template<i64 P>
struct Formatter<ModPT<P>> {
static ostream& write_str(ostream& out, ModPT<P> x) {
return WRITE_STR(out, x.v_);
}
static ostream& write_repr(ostream& out, ModPT<P> x) {
return WRITE_REPR(out, x.v_);
}
};
using ModP = ModPT<MOD>;
// エラトステネスのふるい
template<i64 N>
bool (&is_prime_table())[N] {
static_assert(N >= 3, "");
static bool prime[N] {};
if(!prime[2]) {
fill(begin(prime)+2, end(prime), true);
for(i64 i = 2; i*i <= N-1; ++i) {
if(!prime[i]) continue;
for(i64 j = i+i; j < N; j += i)
prime[j] = false;
}
}
return prime;
}
// F(0) = 0
// F(1) = 1
// F(n) = F(n-1) + F(n-2)
//
// // decltype(auto) で受けると SIZE() が使える (auto だとポインタになってしまう)
// decltype(auto) fib = fibonacci_table<1000>();
template<i64 N>
ModP (&fibonacci_table())[N] {
static_assert(N >= 2, "");
static ModP fib[N] {};
if(fib[1] != 1) {
fib[0] = 0;
fib[1] = 1;
FOR(i, 2, N) {
fib[i] = fib[i-1] + fib[i-2];
}
}
return fib;
}
template<i64 N>
ModP (&factorial_table())[N] {
static_assert(N >= 1, "");
static ModP fac[N] {};
if(fac[0] != 1) {
fac[0] = 1;
FOR(i, 1, N) {
fac[i] = i * fac[i-1];
}
}
return fac;
}
template<i64 N>
ModP (&ifactorial_table())[N] {
static_assert(N >= 1, "");
static ModP ifac[N] {};
if(ifac[0] != 1) {
decltype(auto) fac = factorial_table<N>();
ifac[N-1] = fac[N-1].inv();
for(i64 i = N-2; i >= 0; --i) {
ifac[i] = (i+1) * ifac[i+1];
}
}
return ifac;
}
ModP permutation_count_fac(i64 n, i64 r, const ModP* fac, const ModP* ifac) {
if(n < r) return 0;
return fac[n] * ifac[n-r];
}
template<i64 H, i64 W>
ModP (&combination_count_table())[H][W] {
static_assert(W >= 1 && H >= W, "");
static ModP dp[H][W] {};
if(dp[0][0] != 1) {
REP(i, H) {
dp[i][0] = 1;
dp[i][i] = 1;
}
FOR(i, 1, H) FOR(j, 1, i) {
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
}
}
return dp;
}
template<i64 H, i64 W>
auto combination_count_func() {
static_assert(W >= 1 && H >= W, "");
return MEMOIZE<H,W>([](auto&& self, i64 n, i64 r) -> ModP {
if(n < r) return 0;
if(r == 0) return 1;
if(n == r) return 1;
return self(n-1,r-1) + self(n-1,r);
});
}
ModP combination_count_fac(i64 n, i64 r, const ModP* fac, const ModP* ifac) {
if(n < r) return 0;
return fac[n] * ifac[r] * ifac[n-r];
}
// 分割数 P(n,k) (n を k 個の正整数の和で表す場合の数)
//
// 「n を 最大値 k の正整数の和で表す場合の数」でもある。
// 「n を k 個『以下』の正整数の和で表す場合の数」は sum(P(n,i)) (1<=i<=k)
// 「n を k 個の『非負整数』の和で表す場合の数」は P(n+k,k)
//
// P(0,0) = 1
// P(n,0) = 0
// P(0,k) = 0
// n < k のとき P(n,k) = 0
// P(n,1) = 1
// P(n,n) = 1
template<i64 H, i64 W>
ModP (&partition_count_table())[H][W] {
static_assert(W >= 1 && H >= W, "");
static ModP dp[H][W] {};
if(dp[0][0] != 1) {
REP(j, W) {
dp[j][j] = 1;
}
FOR(i, 2, H) {
dp[i][1] = 1;
}
FOR(i, 3, H) {
FOR(j, 2, MIN(i,W)) {
dp[i][j] = dp[i-1][j-1] + dp[i-j][j];
}
}
}
return dp;
}
// 分割数 メモ化再帰版
template<i64 H, i64 W>
auto partition_count_func() {
static_assert(W >= 1 && H >= W, "");
return MEMOIZE<H,W>([](auto&& self, i64 n, i64 k) -> ModP {
if(n < k) return 0;
if(n == k) return 1;
if(k == 1) return 1;
return self(n-1,k-1) + self(n-k,k);
});
}
// }}}
//--------------------------------------------------------------------
void solve() {
i64 N; RD(N);
auto A = RD_ARRAY<i64>(N);
auto grundy = FIX([](auto&& self, vector<i64>& es) -> i64 {
HashMap<vector<i64>,i64> memo;
auto it = memo.find(es);
if(it == end(memo)) {
HashSet<i64> gs;
REP(i, SIZE(es)) {
if(es[i] >= 1) {
--es[i];
gs.emplace(self(es));
++es[i];
}
if(es[i] >= 2) {
es[i] -= 2;
gs.emplace(self(es));
es[i] += 2;
}
}
i64 res = 0;
while(set_contains(gs, res))
++res;
it = memo.emplace_hint(it, es, res);
}
return SND(*it);
});
vector<i64> gs(N);
REP(i, N) {
auto fs = factorize(A[i]);
vector<i64> es(SIZE(fs));
ALL(transform, fs, begin(es), GENERIC(SND));
gs[i] = grundy(es);
}
DBG(gs);
bool ans = ALL(FOLD1, gs, bit_xor<>()) != 0;
PRINTLN(ans ? "Alice" : "Bob");
// * 小さいケースで試した?
// * 不可能なケースはチェックした?
// * MOD はとった?
// * メモ化忘れてない?
// * 入出力の 0-based/1-based 確認した?
// * 時間/メモリ制限は確認した?
// * 違うやつ提出してない?
// * 違うやつテストしてない?
}
signed main() {
solve();
EXIT();
}