結果
| 問題 |
No.622 点と三角柱の内外判定
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2019-05-09 00:10:09 |
| 言語 | Lua (LuaJit 2.1.1734355927) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,747 bytes |
| コンパイル時間 | 107 ms |
| コンパイル使用メモリ | 5,376 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-02 00:33:48 |
| 合計ジャッジ時間 | 1,450 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 32 |
ソースコード
local n = io.read("*n")
local mce, mfl, msq, mmi = math.ceil, math.floor, math.sqrt, math.min
local function getprimes(x)
local primes = {}
local allnums = {}
for i = 1, x do allnums[i] = true end
for i = 2, x do
if(allnums[i]) then
table.insert(primes, i)
local lim = mfl(x / i)
for j = 2, lim do
allnums[j * i] = false
end
end
end
return primes
end
local function getdivisorparts(x, primes)
local prime_num = #primes
local tmp = {}
local lim = mce(msq(x))
local primepos = 1
local dv = primes[primepos]
while(primepos <= prime_num and dv <= lim) do
if(x % dv == 0) then
local asdf = {}
asdf.p = dv
asdf.cnt = 1
x = x / dv
while(x % dv == 0) do
x = x / dv
asdf.cnt = asdf.cnt + 1
end
table.insert(tmp, asdf)
lim = mce(msq(x))
end
if(primepos == prime_num) then break end
primepos = primepos + 1
dv = primes[primepos]
end
if(x ~= 1) then
local asdf = {}
asdf.p, asdf.cnt = x, 1
table.insert(tmp, asdf)
end
return tmp
end
local function getdivisor(divisorparts)
local t = {}
local pat = 1
local len = #divisorparts
local allpat = 1
for i = 1, len do
allpat = allpat * (divisorparts[i].cnt + 1)
end
for t_i_pat = 0, allpat - 1 do
local div = allpat
local i_pat = t_i_pat
local ret = 1
for i = 1, len do
div = mfl(div / (divisorparts[i].cnt + 1))
local mul = mfl(i_pat / div)
i_pat = i_pat % div
for j = 1, mul do ret = ret * divisorparts[i].p end
end
table.insert(t, ret)
end
table.sort(t)
return t
end
local retmin, retmax = n - 1, n - 1
local primes = getprimes(mce(msq(n)))
local divisorparts = getdivisorparts(n, primes)
local divisor = getdivisor(divisorparts)
local dmax = mce(n^(1/3))
for i = 1, #divisor do
if(dmax < divisor[i]) then break end
local divpart = getdivisorparts(divisor[i], primes)
local remparts = {}
local k = 1
for j = 1, #divpart do
while(k <= #divisorparts) do
local tmp = {}
tmp.p = divisorparts[k].p
if divpart[j].p == divisorparts[k].p then
tmp.cnt = divisorparts[k].cnt - divpart[j].cnt
if(0 < tmp.cnt) then
table.insert(remparts, tmp)
end
k = k + 1
break
else
tmp.cnt = divisorparts[k].cnt
table.insert(remparts, tmp)
k = k + 1
end
end
end
local rem = mfl(n / divisor[i])
local remdiv = getdivisor(remparts)
local remlim = mce(msq(rem))
for j = 1, #remdiv do
if(remlim < remdiv[j]) then break end
local last = mfl(rem / remdiv[j])
retmin = mmi(retmin, divisor[i] + remdiv[j] + last - 3)
end
end
print(retmin .. " " .. retmax)