結果
問題 | No.376 立方体のN等分 (2) |
ユーザー | 👑 obakyan |
提出日時 | 2019-05-09 00:10:31 |
言語 | Lua (LuaJit 2.1.1734355927) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,747 bytes |
コンパイル時間 | 102 ms |
コンパイル使用メモリ | 5,120 KB |
実行使用メモリ | 142,464 KB |
最終ジャッジ日時 | 2024-07-02 00:37:57 |
合計ジャッジ時間 | 21,276 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 427 ms
76,672 KB |
testcase_03 | AC | 396 ms
76,544 KB |
testcase_04 | AC | 533 ms
142,080 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 14 ms
7,552 KB |
testcase_09 | AC | 79 ms
21,248 KB |
testcase_10 | AC | 179 ms
37,632 KB |
testcase_11 | AC | 237 ms
72,576 KB |
testcase_12 | AC | 293 ms
72,576 KB |
testcase_13 | AC | 306 ms
72,576 KB |
testcase_14 | AC | 335 ms
72,448 KB |
testcase_15 | AC | 373 ms
72,576 KB |
testcase_16 | AC | 1,129 ms
76,800 KB |
testcase_17 | AC | 416 ms
76,544 KB |
testcase_18 | AC | 486 ms
142,208 KB |
testcase_19 | WA | - |
testcase_20 | AC | 504 ms
142,080 KB |
testcase_21 | AC | 1,285 ms
142,336 KB |
testcase_22 | AC | 522 ms
142,208 KB |
testcase_23 | AC | 1,312 ms
142,336 KB |
testcase_24 | WA | - |
testcase_25 | AC | 532 ms
142,080 KB |
testcase_26 | AC | 1,366 ms
142,464 KB |
testcase_27 | AC | 540 ms
142,080 KB |
testcase_28 | AC | 544 ms
142,080 KB |
testcase_29 | AC | 547 ms
142,208 KB |
testcase_30 | AC | 542 ms
142,080 KB |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | AC | 546 ms
142,080 KB |
testcase_36 | AC | 543 ms
142,080 KB |
testcase_37 | AC | 547 ms
142,080 KB |
testcase_38 | AC | 563 ms
142,208 KB |
testcase_39 | AC | 554 ms
142,080 KB |
ソースコード
local n = io.read("*n") local mce, mfl, msq, mmi = math.ceil, math.floor, math.sqrt, math.min local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if(allnums[i]) then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while(primepos <= prime_num and dv <= lim) do if(x % dv == 0) then local asdf = {} asdf.p = dv asdf.cnt = 1 x = x / dv while(x % dv == 0) do x = x / dv asdf.cnt = asdf.cnt + 1 end table.insert(tmp, asdf) lim = mce(msq(x)) end if(primepos == prime_num) then break end primepos = primepos + 1 dv = primes[primepos] end if(x ~= 1) then local asdf = {} asdf.p, asdf.cnt = x, 1 table.insert(tmp, asdf) end return tmp end local function getdivisor(divisorparts) local t = {} local pat = 1 local len = #divisorparts local allpat = 1 for i = 1, len do allpat = allpat * (divisorparts[i].cnt + 1) end for t_i_pat = 0, allpat - 1 do local div = allpat local i_pat = t_i_pat local ret = 1 for i = 1, len do div = mfl(div / (divisorparts[i].cnt + 1)) local mul = mfl(i_pat / div) i_pat = i_pat % div for j = 1, mul do ret = ret * divisorparts[i].p end end table.insert(t, ret) end table.sort(t) return t end local retmin, retmax = n - 1, n - 1 local primes = getprimes(mce(msq(n))) local divisorparts = getdivisorparts(n, primes) local divisor = getdivisor(divisorparts) local dmax = mce(n^(1/3)) for i = 1, #divisor do if(dmax < divisor[i]) then break end local divpart = getdivisorparts(divisor[i], primes) local remparts = {} local k = 1 for j = 1, #divpart do while(k <= #divisorparts) do local tmp = {} tmp.p = divisorparts[k].p if divpart[j].p == divisorparts[k].p then tmp.cnt = divisorparts[k].cnt - divpart[j].cnt if(0 < tmp.cnt) then table.insert(remparts, tmp) end k = k + 1 break else tmp.cnt = divisorparts[k].cnt table.insert(remparts, tmp) k = k + 1 end end end local rem = mfl(n / divisor[i]) local remdiv = getdivisor(remparts) local remlim = mce(msq(rem)) for j = 1, #remdiv do if(remlim < remdiv[j]) then break end local last = mfl(rem / remdiv[j]) retmin = mmi(retmin, divisor[i] + remdiv[j] + last - 3) end end print(retmin .. " " .. retmax)