結果

問題 No.376 立方体のN等分 (2)
ユーザー 👑 obakyanobakyan
提出日時 2019-05-09 00:10:31
言語 Lua
(LuaJit 2.1.1696795921)
結果
WA  
実行時間 -
コード長 2,747 bytes
コンパイル時間 102 ms
コンパイル使用メモリ 5,120 KB
実行使用メモリ 142,464 KB
最終ジャッジ日時 2024-07-02 00:37:57
合計ジャッジ時間 21,276 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 427 ms
76,672 KB
testcase_03 AC 396 ms
76,544 KB
testcase_04 AC 533 ms
142,080 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 14 ms
7,552 KB
testcase_09 AC 79 ms
21,248 KB
testcase_10 AC 179 ms
37,632 KB
testcase_11 AC 237 ms
72,576 KB
testcase_12 AC 293 ms
72,576 KB
testcase_13 AC 306 ms
72,576 KB
testcase_14 AC 335 ms
72,448 KB
testcase_15 AC 373 ms
72,576 KB
testcase_16 AC 1,129 ms
76,800 KB
testcase_17 AC 416 ms
76,544 KB
testcase_18 AC 486 ms
142,208 KB
testcase_19 WA -
testcase_20 AC 504 ms
142,080 KB
testcase_21 AC 1,285 ms
142,336 KB
testcase_22 AC 522 ms
142,208 KB
testcase_23 AC 1,312 ms
142,336 KB
testcase_24 WA -
testcase_25 AC 532 ms
142,080 KB
testcase_26 AC 1,366 ms
142,464 KB
testcase_27 AC 540 ms
142,080 KB
testcase_28 AC 544 ms
142,080 KB
testcase_29 AC 547 ms
142,208 KB
testcase_30 AC 542 ms
142,080 KB
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 AC 546 ms
142,080 KB
testcase_36 AC 543 ms
142,080 KB
testcase_37 AC 547 ms
142,080 KB
testcase_38 AC 563 ms
142,208 KB
testcase_39 AC 554 ms
142,080 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

local n = io.read("*n")
local mce, mfl, msq, mmi = math.ceil, math.floor, math.sqrt, math.min

local function getprimes(x)
  local primes = {}
  local allnums = {}
  for i = 1, x do allnums[i] = true end
  for i = 2, x do
    if(allnums[i]) then
      table.insert(primes, i)
      local lim = mfl(x / i)
      for j = 2, lim do
        allnums[j * i] = false
      end
    end
  end
  return primes
end

local function getdivisorparts(x, primes)
  local prime_num = #primes
  local tmp = {}
  local lim = mce(msq(x))
  local primepos = 1
  local dv = primes[primepos]
  while(primepos <= prime_num and dv <= lim) do
    if(x % dv == 0) then
      local asdf = {}
      asdf.p = dv
      asdf.cnt = 1
      x = x / dv
      while(x % dv == 0) do
        x = x / dv
        asdf.cnt = asdf.cnt + 1
      end
      table.insert(tmp, asdf)
      lim = mce(msq(x))
    end
    if(primepos == prime_num) then break end
    primepos = primepos + 1
    dv = primes[primepos]
  end
  if(x ~= 1) then
    local asdf = {}
    asdf.p, asdf.cnt = x, 1
    table.insert(tmp, asdf)
  end
  return tmp
end

local function getdivisor(divisorparts)
  local t = {}
  local pat = 1
  local len = #divisorparts
  local allpat = 1
  for i = 1, len do
    allpat = allpat * (divisorparts[i].cnt + 1)
  end
  for t_i_pat = 0, allpat - 1 do
    local div = allpat
    local i_pat = t_i_pat
    local ret = 1
    for i = 1, len do
      div = mfl(div / (divisorparts[i].cnt + 1))
      local mul = mfl(i_pat / div)
      i_pat = i_pat % div
      for j = 1, mul do ret = ret * divisorparts[i].p end
    end
    table.insert(t, ret)
  end
  table.sort(t)
  return t
end
local retmin, retmax = n - 1, n - 1
local primes = getprimes(mce(msq(n)))
local divisorparts = getdivisorparts(n, primes)
local divisor = getdivisor(divisorparts)
local dmax = mce(n^(1/3))

for i = 1, #divisor do
  if(dmax < divisor[i]) then break end
  local divpart = getdivisorparts(divisor[i], primes)
  local remparts = {}
  local k = 1
  for j = 1, #divpart do
    while(k <= #divisorparts) do
      local tmp = {}
      tmp.p = divisorparts[k].p
      if divpart[j].p == divisorparts[k].p then
        tmp.cnt = divisorparts[k].cnt - divpart[j].cnt
        if(0 < tmp.cnt) then
          table.insert(remparts, tmp)
        end
        k = k + 1
        break
      else
        tmp.cnt = divisorparts[k].cnt
        table.insert(remparts, tmp)
        k = k + 1
      end
    end
  end

  local rem = mfl(n / divisor[i])
  local remdiv = getdivisor(remparts)
  local remlim = mce(msq(rem))
  for j = 1, #remdiv do
    if(remlim < remdiv[j]) then break end
    local last = mfl(rem / remdiv[j])
    retmin = mmi(retmin, divisor[i] + remdiv[j] + last - 3)
  end
end
print(retmin .. " " .. retmax)
0