結果

問題 No.20 砂漠のオアシス
ユーザー peroonperoon
提出日時 2019-05-13 21:58:46
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 26 ms / 5,000 ms
コード長 4,579 bytes
コンパイル時間 1,744 ms
コンパイル使用メモリ 188,512 KB
実行使用メモリ 8,064 KB
最終ジャッジ日時 2024-07-08 08:21:56
合計ジャッジ時間 2,585 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
#define FOR(i,a,b) for(ll i=(a);i<(b);++i)
#define ALL(v) (v).begin(), (v).end()
#define p(s) cout<<(s)<<endl
#define p2(s, t) cout << (s) << " " << (t) << endl
#define br() p("")
#define pn(s) cout << (#s) << " " << (s) << endl
#define p_yes() p("YES")
#define p_no() p("NO")
const ll mod = 1e9 + 7;
const ll inf = 1e18;
template < typename T >
void vprint(T &V){
for(auto v : V){
cout << v << " ";
}
cout << endl;
}
struct Edge{
ll to;
ll cost;
Edge(ll to, ll cost): to(to), cost(cost) {}
Edge(){
to = 0;
cost = 0;
}
};
struct Node{
ll distance;
ll index;
Node(ll d, ll i){
distance = d;
index = i;
}
Node(){}
bool operator<(const Node &another) const
{
return distance < another.distance;
}
bool operator>(const Node &another) const
{
return distance > another.distance;
}
};
struct Dijkstra{
vector<ll> d;
vector<vector<Edge> > graph;
vector<bool> done;
//
void initialize(ll size){
d.resize(size);
done.resize(size);
graph.resize(size);
reset();
}
void reset(){
ll N = graph.size();
FOR(i, 0, N){
d[i] = inf;
done[i] = false;
}
}
ll distance(int i){
if(d.size()<=i) return -1;
return d[i];
}
void print_graph(){
FOR(i, 0, graph.size()){
cout << i << " -> ";
for(auto edge : graph[i]){
cout << edge.to << " ";
}
cout << endl;
}
p("distance");
FOR(i, 0, graph.size()){
ll d = distance(i);
cout << i << " " << d << endl;
}
}
void register_edge(ll a, ll b, ll cost){
auto edge = Edge(b, cost);
graph[a].push_back(edge);
}
void calc_shortest_path(ll from=0){
priority_queue<Node, vector<Node>, greater<Node> > que;
auto node = Node();
//
node.index = from;
node.distance = 0;
que.push(node);
while(!que.empty()){
// 1distance
Node n = que.top();
que.pop();
if(done[n.index]){
continue;
}
done[n.index] = true;
d[n.index] = n.distance;
auto edge_list = graph[n.index];
for(auto edge : edge_list){
//
if(!done[edge.to] && n.distance + edge.cost < d[edge.to]){
ll shorter_distance = n.distance + edge.cost;
que.push(Node(shorter_distance, edge.to));
}
}
}
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
// input
ll N, V, Ox, Oy;
cin >> N >> V >> Ox >> Oy;
Ox--;
Oy--;
vector<vector<ll> > A(N);
FOR(i, 0, N){
FOR(j, 0, N){
ll L;
cin >> L;
A[i].push_back(L);
}
}
auto dij = Dijkstra();
dij.initialize(N*N);
//
FOR(y, 0, N){
FOR(x, 0, N-1){
ll cost0 = A[y][x];
ll cost1 = A[y][x+1];
ll index = N*y + x;
dij.register_edge(index, index+1, cost1);
dij.register_edge(index+1, index, cost0);
}
}
//
FOR(x, 0, N){
FOR(y, 0, N-1){
ll cost0 = A[y][x];
ll cost1 = A[y+1][x];
ll index = N*y + x;
dij.register_edge(index, index+N, cost1);
dij.register_edge(index+N, index, cost0);
}
}
dij.calc_shortest_path();
ll d = dij.distance(N*N-1);
ll rest_HP = V - d;
if(rest_HP>0){
p_yes();
return 0;
}
//
//
if(Ox==-1 && Oy==-1){
p_no();
return 0;
}
d = dij.distance(N*Oy + Ox);
rest_HP = V - d;
if(rest_HP<=0){
p_no();
return 0;
}
rest_HP *= 2;
//
dij.reset();
dij.calc_shortest_path(N*Oy + Ox);
d = dij.distance(N*N-1);
if(rest_HP-d>0){
p_yes();
}else{
p_no();
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0