結果

問題 No.271 next_permutation (2)
ユーザー anta
提出日時 2015-06-28 20:11:54
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 23 ms / 2,000 ms
コード長 6,489 bytes
コンパイル時間 934 ms
コンパイル使用メモリ 94,192 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-26 07:45:50
合計ジャッジ時間 2,235 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#undef NDEBUG
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <functional>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; }
#ifdef NDEBUG
#error assert is disabled!
#endif
template<typename T>
T readNatural(T lo, T up) {
assert(0 <= lo && lo <= up);
T x = 0;
while(1) {
int d = getchar();
if(!('0' <= d && d <= '9')) {
ungetc(d, stdin);
break;
}
d -= '0';
assert(d <= up && x <= (up - d) / 10);
x = x * 10 + d;
}
assert(lo <= x && x <= up);
return x;
}
void readSpace() { int c = getchar(); assert(c == ' '); }
static bool read_eof = false;
void readEOL() {
int c = getchar();
if(c == EOF) {
assert(!read_eof);
read_eof = true;
}else {
assert(c == '\n');
}
}
template<int MOD>
struct ModInt {
static const int Mod = MOD;
unsigned x;
ModInt(): x(0) { }
ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
signed a = x, b = MOD, u = 1, v = 0;
while(b) {
signed t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if(u < 0) u += Mod;
ModInt res; res.x = (unsigned)u;
return res;
}
};
typedef ModInt<1000000007> mint;
struct FenwickTree {
typedef int T;
vector<T> v;
void init(int n) { v.assign(n, 0); }
void add(int i, T x) {
for(; i < (int)v.size(); i |= i+1) v[i] += x;
}
T sum(int i) const { //[0, i)
T r = 0;
for(-- i; i >= 0; i = (i & (i+1)) - 1) r += v[i];
return r;
}
T sum(int left, int right) const { //[left, right)
return sum(right) - sum(left);
}
};
//0 <= res[i] < n - i
void permutationToFactorialNumberSystem(const vector<int> &p, vector<int> &res) {
int n = p.size();
FenwickTree ft;
ft.init(n);
res.resize(n);
for(int i = n - 1; i >= 0; -- i) {
res[i] = ft.sum(p[i]);
ft.add(p[i], 1);
}
}
long long integerToFactorialNumberSystem(int n, long long x, vector<int> &res) {
assert(x >= 0);
res.resize(n);
for(int i = n - 1; i >= 0; -- i) {
res[i] = x % (n - i);
x /= n - i;
}
return x;
}
int addFactorialNumberSystem(const vector<int> &x, const vector<int> &y, vector<int> &res) {
int n = x.size();
assert(y.size() == n);
res.resize(n);
int carry = 0;
for(int i = n - 1; i >= 0; -- i) {
int z = x[i] + y[i] + carry;
res[i] = z % (n - i);
carry = z / (n - i);
}
return carry;
}
//sum [l,u)
ll arithsum(int l, int u) {
if(l >= u) return 0;
int w = u - l;
return (ll)l * w + (ll)w * (w-1) / 2;
}
struct DP {
vector<pair<mint,mint> > dp;
DP(int n): dp((n+1) * 2) { }
pair<mint,mint> &operator()(int i, bool lt) { return dp[i * 2 + lt]; }
};
// p < x inv
//= p < x factorial number system
//(i, lt)(cnt, sum)DP
mint solve(const vector<int> &x) {
int n = x.size();
DP dp(n);
dp(n, true) = mp(mint(1), mint(0));
for(int i = n-1; i >= 0; -- i) rep(lt, 2) {
mint cnt, sum;
int d = x[i];
/* //
rep(e, n - i) if(lt || e <= d) {
auto p = dp(i+1, lt || e < d);
cnt += p.first, sum += p.second;
sum += p.first * e;
}
*/
//e < d
{
auto p = dp(i+1, true);
cnt += p.first * d, sum += p.second * d;
sum += p.first * arithsum(0, d);
}
//e = d
{
auto p = dp(i+1, lt != 0);
cnt += p.first, sum += p.second;
sum += p.first * d;
}
//e > d
if(lt) {
auto p = dp(i+1, true);
int t = n - i - d - 1;
cnt += p.first * t, sum += p.second * t;
sum += p.first * arithsum(d+1, n - i);
}
dp(i, lt != 0) = mp(cnt, sum);
}
return dp(0, false).second;
}
int main() {
int N; long long K;
N = readNatural(1, (int)1e5);
readSpace();
K = readNatural(0LL, (ll)1e18);
readEOL();
vector<int> p(N);
rep(i, N) {
p[i] = readNatural(1, N);
if(i < N-1) readSpace(); else readEOL();
}
assert(!read_eof);
{ vector<bool> vis(N);
rep(i, N) {
assert(!vis[p[i]-1]);
vis[p[i]-1] = true;
}
}
rep(i, N) -- p[i];
//p, f^K(p) factorial number system
//
vector<int> x, y, z;
permutationToFactorialNumberSystem(p, x);
long long cycles = 0;
cycles += integerToFactorialNumberSystem(N, K, y);
cycles += addFactorialNumberSystem(x, y, z);
//factorial number systeminv
// \sum_{p is a permutation of [1..n]} inv(p)
//= \sum_{i=2}^n \sum{j=0}^{i-1} (n! / i) j
//= n! \sum_{i=1}^{n-1} i / 2
//= n! n (n-1) / 4
mint allinvsum = 1;
rep(i, N) allinvsum *= i+1;
allinvsum *= mint(N) * (N-1) / 4;
mint ans;
ans += allinvsum * cycles;
ans += solve(z);
ans -= solve(x);
printf("%d\n", ans.get());
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0