結果
| 問題 | No.502 階乗を計算するだけ |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-05-22 01:56:17 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 13,743 bytes |
| 記録 | |
| コンパイル時間 | 12,657 ms |
| コンパイル使用メモリ | 387,228 KB |
| 最終ジャッジ日時 | 2024-11-14 21:28:15 |
| 合計ジャッジ時間 | 13,682 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
error[E0432]: unresolved import `mod_int`
--> src/main.rs:228:9
|
228 | use mod_int;
| ^^^^^^^ no external crate `mod_int`
|
help: consider importing this module instead
|
228 | use crate::mod_int;
| ~~~~~~~~~~~~~~
error[E0432]: unresolved import `fft`
--> src/main.rs:229:9
|
229 | use fft;
| ^^^ no external crate `fft`
|
help: consider importing this module instead
|
229 | use crate::fft;
| ~~~~~~~~~~
error[E0432]: unresolved import `mod_int`
--> src/main.rs:314:15
|
314 | use ::mod_int::Mod;
| ^^^^^^^ help: a similar path exists: `crate::mod_int`
|
= note: `use` statements changed in Rust 2018; read more at <https://doc.rust-lang.org/edition-guide/rust-2018/module-system/path-clarity.html>
For more information about this error, try `rustc --explain E0432`.
error: could not compile `main` (bin "main") due to 3 previous errors
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
/// Verified by https://atcoder.jp/contests/arc093/submissions/3968098
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type ModInt = mod_int::ModInt<P>;
/// FFT (in-place, verified as NTT only)
/// R: Ring + Copy
/// Verified by: https://codeforces.com/contest/1096/submission/47672373
mod fft {
use std::ops::*;
/// n should be a power of 2. zeta is a primitive n-th root of unity.
/// one is unity
/// Note that the result should be multiplied by 1/sqrt(n).
pub fn transform<R>(f: &mut [R], zeta: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
{
let mut i = 0;
for j in 1 .. n - 1 {
let mut k = n >> 1;
loop {
i ^= k;
if k <= i { break; }
k >>= 1;
}
if j < i { f.swap(i, j); }
}
}
let mut zetapow = Vec::new();
{
let mut m = 1;
let mut cur = zeta;
while m < n {
zetapow.push(cur);
cur = cur * cur;
m *= 2;
}
}
let mut m = 1;
while m < n {
let base = zetapow.pop().unwrap();
let mut r = 0;
while r < n {
let mut w = one;
for s in r .. r + m {
let u = f[s];
let d = f[s + m] * w;
f[s] = u + d;
f[s + m] = u - d;
w = w * base;
}
r += 2 * m;
}
m *= 2;
}
}
}
mod arbitrary_mod {
use mod_int;
use fft;
const MOD1: i64 = 1012924417;
const MOD2: i64 = 1224736769;
const MOD3: i64 = 1007681537;
const G1: i64 = 5;
const G2: i64 = 3;
const G3: i64 = 3;
define_mod!(P1, MOD1);
define_mod!(P2, MOD2);
define_mod!(P3, MOD3);
fn zmod(mut a: i64, b: i64) -> i64 {
a %= b;
if a < 0 {
a += b;
}
a
}
fn ext_gcd(mut a: i64, mut b: i64) -> (i64, i64, i64) {
let mut x = 0;
let mut y = 1;
let mut u = 1;
let mut v = 0;
while a != 0 {
let q = b / a;
x -= q * u;
std::mem::swap(&mut x, &mut u);
y -= q * v;
std::mem::swap(&mut y, &mut v);
b -= q * a;
std::mem::swap(&mut b, &mut a);
}
(b, x, y)
}
fn invmod(a: i64, b: i64) -> i64 {
let x = ext_gcd(a, b).1;
zmod(x, b)
}
// This function is ported from http://math314.hateblo.jp/entry/2015/05/07/014908
fn garner(mut mr: Vec<(i64, i64)>, mo: i64) -> i64 {
mr.push((mo, 0));
let mut coffs = vec![1; mr.len()];
let mut constants = vec![0; mr.len()];
for i in 0..mr.len() - 1 {
let v = zmod(mr[i].1 - constants[i], mr[i].0) * invmod(coffs[i], mr[i].0) % mr[i].0;
assert!(v >= 0);
for j in i + 1..mr.len() {
constants[j] += coffs[j] * v % mr[j].0;
constants[j] %= mr[j].0;
coffs[j] = coffs[j] * mr[i].0 % mr[j].0;
}
}
constants[mr.len() - 1]
}
// f *= g, g is destroyed
fn convolution_friendly<P: mod_int::Mod>(a: &[i64], b: &[i64], gen: i64) -> Vec<i64> {
use mod_int::ModInt;
let d = a.len();
let mut f = vec![ModInt::<P>::new(0); d];
let mut g = vec![ModInt::<P>::new(0); d];
for i in 0..d {
f[i] = a[i].into();
g[i] = b[i].into();
}
let zeta = ModInt::new(gen).pow((P::m() - 1) / d as i64);
fft::transform(&mut f, zeta, ModInt::new(1));
fft::transform(&mut g, zeta, ModInt::new(1));
for i in 0..d {
f[i] *= g[i];
}
fft::transform(&mut f, zeta.inv(), ModInt::new(1));
let inv = ModInt::new(d as i64).inv();
let mut ans = vec![0; d];
for i in 0..d {
ans[i] = (f[i] * inv).x;
}
ans
}
pub fn arbmod_convolution(a: &mut [i64], b: &mut [i64], mo: i64)
-> Vec<i64> {
use ::mod_int::Mod;
let d = a.len();
assert!(d.is_power_of_two());
assert_eq!(d, b.len());
for x in a.iter_mut() {
*x = zmod(*x, mo);
}
for x in b.iter_mut() {
*x = zmod(*x, mo);
}
let x = convolution_friendly::<P1>(&a, &b, G1);
let y = convolution_friendly::<P2>(&a, &b, G2);
let z = convolution_friendly::<P3>(&a, &b, G3);
let mut ret = vec![0; d];
let mut mr = [(0, 0); 3];
for i in 0..d {
mr[0] = (P1::m(), x[i]);
mr[1] = (P2::m(), y[i]);
mr[2] = (P3::m(), z[i]);
ret[i] = garner(mr.to_vec(), mo);
}
ret
}
}
// f *= g, g is not destroyed
fn convolution(f: &mut [i64], g: &mut [i64]) {
let ans = arbitrary_mod::arbmod_convolution(f, g, MOD);
for i in 0..f.len() {
f[i] = ans[i];
}
}
fn grow(d: i64, v: i64, mut h: Vec<i64>,
invfac: &[ModInt]) -> Vec<i64> {
assert_eq!(h.len() as i64, d + 1);
let dd = d as usize;
let dm = ModInt::new(d);
let vm = ModInt::new(v);
let mut aux = vec![1; dd];
let mut f = vec![0; 4 * dd];
let mut g = vec![0; 4 * dd];
for i in 0..dd + 1 {
f[i] = (invfac[i] * invfac[dd - i] * h[i]).x;
if (dd + i) % 2 != 0 {
f[i] = if f[i] == 0 { 0 } else { MOD - f[i] };
}
}
let oldf = f.clone();
for (idx, &a) in [dm + 1, dm * vm.inv(), dm * vm.inv() + dm + 1].iter().enumerate() {
for i in 0..4 * dd { f[i] = oldf[i]; }
for i in 0..4 * dd { g[i] = 0; }
for i in 1..2 * dd + 2 {
g[i] = (a - d + i as i64 - 1).inv().x;
}
convolution(&mut f, &mut g);
let mut prod = 1;
for i in 0..dd + 1 {
prod = prod * (a - i as i64).x % MOD;
assert_ne!(prod, 0);
}
for i in 0..dd + 1 {
f[dd + i + 1] = f[dd + i + 1] * prod % MOD;
prod = prod * (a + i as i64 + 1).x % MOD;
prod = prod * (a - d + i as i64).inv().x % MOD;
}
match idx {
1 => {
for i in 0..dd + 1 {
h[i] = h[i] * f[dd + 1 + i] % MOD;
}
}
0 => {
for i in 0..dd {
aux[i] = f[dd + 1 + i];
}
}
2 => {
for i in 0..dd {
aux[i] = aux[i] * f[dd + 1 + i] % MOD;
}
}
_ => unreachable!(),
}
}
h.extend_from_slice(&aux);
h
}
fn gen_seq(d: i64, v: i64) -> Vec<i64> {
assert!(d > 0 && (d as u64).is_power_of_two());
let dd = d as usize;
// precompute factorial and its inv
let mut fac = vec![ModInt::new(0); 2 * dd + 1];
let mut invfac = vec![ModInt::new(0); 2 * dd + 1];
fac[0] = ModInt::new(1);
for i in 1..2 * dd + 1 {
fac[i] = fac[i - 1] * (i as i64);
}
invfac[2 * dd] = fac[2 * dd].inv();
for i in (0..2 * dd).rev() {
invfac[i] = invfac[i + 1] * (i as i64 + 1);
}
let mut size = 1;
// Initialized with [g_1(0), g_1(v)].
let mut seq = vec![1.into(), (v + 1).into()];
while size < d {
seq = grow(size, v, seq, &invfac);
size *= 2;
}
assert_eq!(size, d);
seq
}
fn fact(n: i64) -> ModInt {
let d = 1 << 15;
let aux = gen_seq(d, d);
// eprintln!("{:?}", aux);
let mut ans = ModInt::new(1);
let lim = min(d, (n + 1) / d);
for i in 0..lim {
ans *= aux[i as usize];
}
for i in lim * d..n {
ans *= i + 1;
}
ans
}
fn fact_naive(n: i64) -> ModInt {
let mut ans = ModInt::new(1);
for i in 1..n + 1 {
ans *= i;
}
ans
}
// Uses techniques described in https://min-25.hatenablog.com/entry/2017/04/10/215046.
// Bostan, A., Gaudry, P., & Schost, É. (2007). Linear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier–Manin Operator. SIAM Journal on Computing, 36(6), 1777–1806. https://doi.org/10.1137/s0097539704443793
fn main() {
input!(n: i64);
if n >= MOD {
println!("0");
} else {
println!("{}", fact(n));
}
}