結果
問題 | No.720 行列のできるフィボナッチ数列道場 (2) |
ユーザー | legosuke |
提出日時 | 2019-06-10 14:58:40 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,045 bytes |
コンパイル時間 | 2,299 ms |
コンパイル使用メモリ | 175,732 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-06 00:38:28 |
合計ジャッジ時間 | 2,494 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> #define int long long #define pii pair<int,int> #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define REP(i,n) FOR(i,0,n) #define ALL(c) (c).begin(),(c).end() #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) #define MINF(a) memset(a,0x3f,sizeof(a)) #define POW(n) (1LL<<(n)) #define IN(i,a,b) (a <= i && i <= b) using namespace std; template <typename T> inline bool CHMIN(T& a,T b) { if(a>b) { a=b; return 1; } return 0; } template <typename T> inline bool CHMAX(T& a,T b) { if(a<b) { a=b; return 1; } return 0; } template <typename T> inline void SORT(T& a) { sort(ALL(a)); } template <typename T> inline void REV(T& a) { reverse(ALL(a)); } template <typename T> inline void UNI(T& a) { sort(ALL(a)); a.erase(unique(ALL(a)),a.end()); } const int MOD = 1000000007; const int INF = 0x3f3f3f3f3f3f3f3f; const double EPS = 1e-10; /* ---------------------------------------------------------------------------------------------------- */ template <typename T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n,vector<T>(m,0)) {} Matrix(size_t n) : A(n, vector<T>(n,0)) {} size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ((*this)[i][j] += B[i][j]) %= MOD; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ((*this)[i][j] += MOD - B[i][j]) %= MOD; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n,vector<T>(m,0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j] % MOD) % MOD; A.swap(C); return (*this); } Matrix &operator^=(int k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) += MOD - B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const int k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : "."); } } return (os); } }; int pow_mod(int a, int n, int m = MOD) { int res = 1; while (n > 0) { if (n & 1) res = res * a % m; a = a * a % m; n >>= 1; } return res; } signed main() { cin.tie(0); ios_base::sync_with_stdio(false); cout << fixed << setprecision(10); int N,M; cin >> N >> M; Matrix<int> A(2,2); A[0][0] = 1; A[0][1] = 1; A[1][0] = 1; Matrix<int> X(2,1); X[0][0] = 1; X = (A ^ (M-1)) * X; int f = X[0][0]; X[0][0] = 3; X[1][0] = 1; X = (A ^ (M-2)) * X; int g = X[0][0]; X[0][0] = 1; X[1][0] = 1; X = (A ^ (M-2)) * X; int h = X[0][0]; Matrix<int> P(3,3),Q(3,1); P[0][0] = g; P[0][1] = ((M-1)&1 ? pow_mod(MOD-1,MOD-2) : 1); P[0][2] = h; P[1][0] = 1; P[2][2] = 1; Q[0][0] = f; Q[1][0] = 0; Q[2][0] = 1; Q = (P ^ (N-1)) * Q; cout << Q[0][0] << endl; return 0; }