結果
| 問題 |
No.720 行列のできるフィボナッチ数列道場 (2)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-06-10 14:58:40 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 4,045 bytes |
| コンパイル時間 | 2,299 ms |
| コンパイル使用メモリ | 175,732 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-06 00:38:28 |
| 合計ジャッジ時間 | 2,494 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
#include <bits/stdc++.h>
#define int long long
#define pii pair<int,int>
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(c) (c).begin(),(c).end()
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define MINF(a) memset(a,0x3f,sizeof(a))
#define POW(n) (1LL<<(n))
#define IN(i,a,b) (a <= i && i <= b)
using namespace std;
template <typename T> inline bool CHMIN(T& a,T b) { if(a>b) { a=b; return 1; } return 0; }
template <typename T> inline bool CHMAX(T& a,T b) { if(a<b) { a=b; return 1; } return 0; }
template <typename T> inline void SORT(T& a) { sort(ALL(a)); }
template <typename T> inline void REV(T& a) { reverse(ALL(a)); }
template <typename T> inline void UNI(T& a) { sort(ALL(a)); a.erase(unique(ALL(a)),a.end()); }
const int MOD = 1000000007;
const int INF = 0x3f3f3f3f3f3f3f3f;
const double EPS = 1e-10;
/* ---------------------------------------------------------------------------------------------------- */
template <typename T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n,vector<T>(m,0)) {}
Matrix(size_t n) : A(n, vector<T>(n,0)) {}
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector<T> &operator[](int k) const {
return (A.at(k));
}
inline vector<T> &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
((*this)[i][j] += B[i][j]) %= MOD;
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
((*this)[i][j] += MOD - B[i][j]) %= MOD;
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n,vector<T>(m,0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j] % MOD) % MOD;
A.swap(C);
return (*this);
}
Matrix &operator^=(int k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) += MOD - B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const int k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ".");
}
}
return (os);
}
};
int pow_mod(int a, int n, int m = MOD) {
int res = 1;
while (n > 0) {
if (n & 1) res = res * a % m;
a = a * a % m;
n >>= 1;
}
return res;
}
signed main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(10);
int N,M;
cin >> N >> M;
Matrix<int> A(2,2);
A[0][0] = 1; A[0][1] = 1; A[1][0] = 1;
Matrix<int> X(2,1);
X[0][0] = 1;
X = (A ^ (M-1)) * X;
int f = X[0][0];
X[0][0] = 3; X[1][0] = 1;
X = (A ^ (M-2)) * X;
int g = X[0][0];
X[0][0] = 1; X[1][0] = 1;
X = (A ^ (M-2)) * X;
int h = X[0][0];
Matrix<int> P(3,3),Q(3,1);
P[0][0] = g; P[0][1] = ((M-1)&1 ? pow_mod(MOD-1,MOD-2) : 1); P[0][2] = h;
P[1][0] = 1; P[2][2] = 1;
Q[0][0] = f; Q[1][0] = 0; Q[2][0] = 1;
Q = (P ^ (N-1)) * Q;
cout << Q[0][0] << endl;
return 0;
}