結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-06-10 22:27:02 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 20 ms / 5,000 ms |
| コード長 | 7,338 bytes |
| コンパイル時間 | 2,055 ms |
| コンパイル使用メモリ | 179,728 KB |
| 実行使用メモリ | 11,136 KB |
| 最終ジャッジ日時 | 2024-10-06 00:59:31 |
| 合計ジャッジ時間 | 3,661 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
// includes
#include <bits/stdc++.h>
// macros
#define ll long long int
#define pb emplace_back
#define mk make_pair
#define pq priority_queue
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define vrep(v, i) for(int i = 0; i < (v).size(); i++)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define FI first
#define SE second
#define dump(a, n) for(int i = 0; i < n; i++)cout << a[i] << "\n "[i + 1 != n];
#define dump2(a, n, m) for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)cout << a[i][j] << "\n "[j + 1 != m];
#define bit(n) (1LL<<(n))
#define INT(n) int n; cin >> n;
#define LL(n) ll n; cin >> n;
#define DOUBLE(n) double n; cin >> n;
using namespace std;
// types
typedef pair<int, int> P;
typedef pair<ll, int> Pl;
typedef pair<ll, ll> Pll;
typedef pair<double, double> Pd;
typedef complex<double> cd;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1e9 + 7;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// solve
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template<typename T>
T extgcd(T a, T b, T &x, T &y){
T d = a;
if(b != 0){
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}else{
x = 1, y = 0;
}
return d;
}
template <typename T>
T modinv(T a, T m){
long long x = 0, y = 0;
extgcd<long long>(a, m, x, y);
x %= m;
if(x < 0)x += m;
return x;
}
template <int MOD = int(1e9+7)>
struct LMatrix{
vector<vector<long long>> v;
int n, m;
LMatrix(int n_, int m_ = -1): n(n_), m(m_){
if(m < 0)m = n;
v.resize(n);
for(int i = 0; i < n; i++)v[i].resize(m, 0);
}
void identity(){
assert(n == m);
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
v[i][j] = (i == j ? 1: 0);
}
}
}
vector<long long> &operator[](size_t i){
return v[i];
}
const vector<long long> &operator[](size_t i) const{
return v[i];
}
LMatrix operator*(const LMatrix &r) const{
assert(m == r.n);
int l = r.m;
LMatrix res(n, l);
for(int i = 0; i < n; i++){
for(int j = 0; j < l; j++){
res.v[i][j] = 0;
for(int k = 0; k < m; k++){
res.v[i][j] = (res.v[i][j] + v[i][k] * r.v[k][j] % MOD) % MOD;
}
}
}
return res;
}
LMatrix operator+(const LMatrix &r) const{
assert(n == r.n);
assert(m == r.m);
LMatrix res(n, m);
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
res[i][j] = (v[i][j] + r[i][j]) % MOD;
}
}
return res;
}
LMatrix operator-(const LMatrix &r) const{
assert(n == r.n);
assert(m == r.m);
LMatrix res(n, m);
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
res[i][j] = (v[i][j] - r[i][j]) % MOD;
if(res[i][j] < 0)res[i][j] += MOD;
}
}
return res;
}
template <typename T>
LMatrix operator*(T a) const{
LMatrix res = *this;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
res[i][j] = a * res[i][j] % MOD;
}
}
return res;
}
LMatrix inv2() const{
assert(n == 2 && m == 2);
long long det = v[0][0] * v[1][1] % MOD - v[0][1] * v[1][0] % MOD;
if(det < 0)det += MOD;
assert(det != 0);
LMatrix res(2, 2);
long long inv = modinv(det, (long long)MOD);
res[0][0] = v[1][1];
res[1][1] = v[0][0];
res[1][0] = - v[1][0];
res[0][1] = - v[0][1];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
res[i][j] %= MOD;
res[i][j] = res[i][j] * inv % MOD;
if(res[i][j] < 0)res[i][j] += MOD;
}
}
return res;
}
};
template <typename T, int MOD = int(1e9+7)>
LMatrix<MOD> operator*(T a, const LMatrix<MOD> b){
return b * a;
}
template <int MOD = int(1e9+7)>
LMatrix<MOD> powerm(LMatrix<MOD> &a, long long n){
long long tmp = n;
LMatrix<MOD> curr = a;
LMatrix<MOD> res(a.n);
res.identity();
while(tmp){
if(tmp % 2 == 1){
res = res * curr;
}
curr = curr * curr;
tmp /= 2;
}
return res;
}
int main(int argc, char const* argv[])
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(20);
INT(n); LL(k);
vector<ll> a(n); cin >> a;
if(n > 30){
vector<ll> ans(k, 0);
ll res = 0;
rep(i, n)ans[i] = a[i];
rep(i, n)res += a[i];
ans[n] = res;
res += ans[n];
FOR(i, n + 1, k){
ans[i] = (ans[i-1] * 2 % mod - ans[i-n-1]) % mod;
if(ans[i] < 0)ans[i] += mod;
res = (res + ans[i]) % mod;
}
cout << ans[k-1] << " " << res << endl;
}else{
LMatrix<> l(n, n);
rep(i, n)l[0][i] = 1;
FOR(i, 1, n)l[i][i-1] = 1;
auto LP = powerm(l, k - n);
ll res = 0;
rep(i, n)res = (res + LP[0][i] * a[n-1-i] % mod) % mod;
LMatrix<> ls(n + 1, n + 1);
ls[0][0] = 2, ls[0][n] = -1;
FOR(i, 1, n + 1)ls[i][i-1] = 1;
auto LSP = powerm(ls, k - n);
ll res2 = 0;
vector<ll> asum(n, 0); rep(i, n)asum[i] = a[i] + (i > 0 ? asum[i-1]: 0);
rep(i, n)res2 = (res2 + LSP[0][i] * asum[n-1-i] % mod) % mod;
if(res2 < 0)res2 += mod;
cout << res << " " << res2 << endl;
}
return 0;
}