結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | NyaanNyaan |
提出日時 | 2019-06-11 17:16:12 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 18 ms / 5,000 ms |
コード長 | 11,446 bytes |
コンパイル時間 | 1,582 ms |
コンパイル使用メモリ | 115,268 KB |
実行使用メモリ | 18,996 KB |
最終ジャッジ日時 | 2024-10-06 10:03:57 |
合計ジャッジ時間 | 2,506 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
#pragma GCC optimize("O2")#include <algorithm>#include <cassert>#include <cmath>#include <cstdarg>#include <cstdio>#include <cstring>#include <deque>#include <iomanip>#include <iostream>#include <iterator>#include <map>#include <numeric>#include <queue>#include <set>#include <stack>#include <string>#include <utility>#include <vector>#define whlie while#define mp make_pair#define pb emplace_back#define fi first#define se second#define inf 1001001001#define infLL ( (1LL << 61))#define FOR(i,a,b) for(int (i)=((int)a); (i)<((int)b); (i)++) // [a,b)#define rep(i,N) FOR((i), 0, ((int)N)) // [0,N)#define FORR(i,a,b) for(int (i)=((int)b) - 1; (i)>=((int)a); (i)--)#define repr(i,N) FORR((i), 0, ((int)N))#define all(v) (v).begin(),(v).end()#define sz(v) ((int)(v).size())#define vrep(v,it) for(auto it=v.begin();it!=v.end();it++)#define vrepr(v,it) for(auto it=v.rbegin();it!=v.rend();it++)#define inx(t,...) t __VA_ARGS__; in(__VA_ARGS__)#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)#define inc(...) char __VA_ARGS__; in(__VA_ARGS__)#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)#define ind(...) double __VA_ARGS__; in(__VA_ARGS__)#define inpii(...) pii __VA_ARGS__; in(__VA_ARGS__)#define invi(v,...) vi v; in(v,##__VA_ARGS__)#define invl(v,...) vl v; in(v,##__VA_ARGS__)#define mem(ar,val) memset((ar), (val), sizeof(ar) )#define mem0(ar) memset((ar), 0, sizeof(ar) )#define mem1(ar) memset((ar), -1, sizeof(ar) )#ifdef LOCAL#define dbg(...) fprintf(stderr, __VA_ARGS__)#define trc(...) do { cout << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0)#define stopif(val) assert( !(val) )#define vdbg(v,...) do { cout << #v << " = "; vector_debug(v , ##__VA_ARGS__);} while(0)#else#define dbg(...) 1#define trc(...) 1#define stopif(...) 1#define vdbg(...) 1#endifusing namespace std;typedef long long ll;typedef pair<int,int> pii;typedef pair<ll,ll> pll;typedef vector<int> vi;typedef vector<ll> vl;typedef vector<string> vs;typedef vector<pii> vpii;typedef vector< vector<int> > vvi;struct IoSetup {IoSetup() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(15);cerr << fixed << setprecision(15);}} iosetup;int gcd(int a, int b){if(a>b) swap(a,b); return a==0 ? b : gcd(b%a,a);} ll gcd(ll a, ll b){if(a>b) swap(a,b); return a==0 ? b : gcd(b%a,a);}int lcm(int a, int b){return (a / gcd(a,b)) * b;} ll lcm(ll a, ll b){return (a / gcd(a,b)) * b;}inline ll pow(int a, int b){ll ans = 1; rep(i,b) ans *= a; return ans;} inline ll pow(ll a, ll b){ll ans = 1; rep(i,b) ans*= a; return ans;}inline ll pow(int a, ll b){ll ans = 1; rep(i,b) ans *= a; return ans;} inline ll pow(ll a, int b){ll ans = 1; rep(i,b) ans*= a; return ans;}template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }template<typename C> inline void _cin(C &c){cin >> c;}template<typename T,typename U> inline void _cin(pair<T,U> &p){cin >> p.fi; cin >> p.se;}template<typename C> inline void _cout(const C &c){cout << c;}template<typename T,typename U> inline void _cout(const pair<T,U> &p){cout << p.fi << ' ' << p.se;}void in(){} template <typename T,class... U> void in(T &t,U &...u){ _cin(t); in(u...);}void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,U ...u){ _cout(t); if(sizeof...(u)) cout << ' '; out(u...);}template<typename C> inline void in(vector<C> &v,int N=-1){if(sz(v) != 0){int M=(N == -1) ? sz(v) : N; rep(i,M) _cin(v[i]);}else{C c;rep(i,N) v.pb((_cin(c),c));}}template<typename C> inline void in(C v[],int N){rep(i,N) _cin(v[i]);}template<typename C> inline void out(const vector<C> &v,int N=-1){int M=(N == -1) ? sz(v) : N; rep(i,M) {cout<<( (i)?" ":"" ); _cout(v[i]);} cout<<"\n";}template<typename C> inline void out(C v[],int N){rep(i,N) {cout<<( (i)?" ":"" ); _cout(v[i]);} cout<<"\n";}template<typename C> inline void vector_debug(const vector<C> &v,int N=-1){cout << "{"; int M=(N == -1) ? sz(v) : N; rep(i,M) {cout<<( (i)?", ":"" );_cout(v[i]);} cout<<"}"<<endl;}template<typename C> inline void vector_debug(C v[], int N){cout << "{"; rep(i,N) {cout<<((i)?", ":""); _cout(*(v+i));} cout<<"}"<<endl;}void dbg_out(){cout << endl;} template <typename T,class... U> void dbg_out(const T &t,U ...u){ _cout(t); if(sizeof...(u)) cout << ", "; dbg_out(u...);}template<typename C,class... U> void dbg_out(const vector<C> &v,U ...u){vector_debug(v); if(sizeof...(u)) cout << ", "; dbg_out(u...);}template<typename C,class... U> void dbg_out(const vector<vector<C>> &v,U ...u){cout << "{ "; rep(i,sz(v)) {if(i)cout<<", "; vector_debug(v[i]);}cout << " }"; if(sizeof...(u)) cout << ", "; dbg_out(u...);}template<typename C> inline C vmax(const vector<C> &v){C n=v[0]; rep(i,sz(v)) amax(n,v[i]); return n;} template<typename C> inline C vmax(C v[], intN){C n=v[0]; rep( i , N ) amax(n,v[i]); return n;}template<typename C> inline C vmin(const vector<C> &v){C n=v[0]; rep(i,sz(v)) amin(n,v[i]); return n;} template<typename C> inline C vmin(C v[], intN){C n=v[0]; rep( i , N ) amin(n,v[i]); return n;}template<typename C> inline C vsum(const vector<C> &v){C n=0; rep(i,sz(v)) n+=v[i]; return n;} template<typename C> inline C vsum(C v[], int N){C n=0; rep( i , N ) n+=v[i]; return n;}/////////////// main ///////////////template< int mod >struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt< mod >(t);return (is);}};template< class T >struct Matrix {vector< vector< T > > A;Matrix() {}Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}Matrix(size_t n) : A(n, vector< T >(n, 0)) {};size_t height() const {return (A.size());}size_t width() const {return (A[0].size());}inline const vector< T > &operator[](int k) const {return (A.at(k));}inline vector< T > &operator[](int k) {return (A.at(k));}static Matrix I(size_t n) {Matrix mat(n);for(int i = 0; i < n; i++) mat[i][i] = 1;return (mat);}Matrix &operator+=(const Matrix &B) {size_t n = height(), m = width();assert(n == B.height() && m == B.width());for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)(*this)[i][j] += B[i][j];return (*this);}Matrix &operator%=(const ll &m){for(int i=0; i < height(); i++)for(int j=0; j < width(); j++){(*this)[i][j] += m;(*this)[i][j] %= m;}return (*this);}Matrix &operator-=(const Matrix &B) {size_t n = height(), m = width();assert(n == B.height() && m == B.width());for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)(*this)[i][j] -= B[i][j];return (*this);}Matrix &operator*=(const Matrix &B) {size_t n = height(), m = B.width(), p = width();assert(p == B.height());vector< vector< T > > C(n, vector< T >(m, 0));for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)for(int k = 0; k < p; k++)C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]) % (T)1000000007;A.swap(C);return (*this);}Matrix &operator^=(long long k) {Matrix B = Matrix::I(height());while(k > 0) {if(k & 1) B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return (*this);}Matrix operator+(const Matrix &B) const {return (Matrix(*this) += B);}Matrix operator%(const T &m) const{return (Matrix(*this) %= m);}Matrix operator-(const Matrix &B) const {return (Matrix(*this) -= B);}Matrix operator*(const Matrix &B) const {return (Matrix(*this) *= B);}Matrix operator^(const long long k) const {return (Matrix(*this) ^= k);}friend ostream &operator<<(ostream &os, Matrix &p) {size_t n = p.height(), m = p.width();for(int i = 0; i < n; i++) {os << "[";for(int j = 0; j < m; j++) {os << p[i][j] << (j + 1 == m ? "]\n" : ",");}}return (os);}T determinant() {Matrix B(*this);assert(width() == height());T ret = 1;for(int i = 0; i < width(); i++) {int idx = -1;for(int j = i; j < width(); j++) {if(B[j][i] != 0) idx = j;}if(idx == -1) return (0);if(i != idx) {ret *= -1;swap(B[i], B[idx]);}ret *= B[i][i];T vv = B[i][i];for(int j = 0; j < width(); j++) {B[i][j] /= vv;}for(int j = i + 1; j < width(); j++) {T a = B[j][i];for(int k = 0; k < width(); k++) {B[j][k] -= B[i][k] * a;}}}return (ret);}};template<typename T>Matrix<T> Mpow(Matrix<T> A, ll N){if(N == 0){return A.I(A.height());}if(N == 1) return A;if(N % 2 == 1) return (Mpow(A, N - 1) * A) % (T)1000000007;Matrix<T> half = Mpow(A , N / 2);return (half * half) % (T)1000000007;}int main(){constexpr ll mod = 1000000007;inl(N); inl(K);vl A(N + 1);FOR(i, 1, N + 1) in(A[i]);if(K <= N || N > 30){vl F(K + 10,0),S(K + 10,0);FOR(i,1,N + 1){F[i] = A[i]; S[i] = S[i - 1] + A[i];}if( K <= N ) {out(F[K],S[K]); return 0;};FOR( i , N + 1, K + 1 ){F[i] = ( S[i - 1] - S[i - N - 1] + mod ) % mod;S[i] = (S[i - 1] + F[i]) % mod;}out(F[K],S[K]); return 0;}Matrix<ll> FM(N);rep(i,N) FM[0][i] = 1;rep(i,N-1) FM[i+1][i] = 1;//cout << FM;Matrix<ll> F(N,1);rep(i,N) F[i][0] = A[N - i];Matrix<ll> SM(N + 1);SM[0][0] = 2; SM[0][N] = -1;rep(i,N) SM[i+1][i] = 1;Matrix<ll> S(N + 1, 1);FOR(i,1,N + 1){S[N - i][0] = S[N - i + 1][0] + A[i];}Matrix<ll> ans = Mpow(FM , K - N) * F;//cout << ans;Matrix<ll> ans2 = Mpow(SM, K - N) * S;out(ans[0][0] , ans2[0][0]);}