結果
問題 | No.189 SUPER HAPPY DAY |
ユーザー | WarToks |
提出日時 | 2019-06-11 21:41:01 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 15 ms / 5,000 ms |
コード長 | 6,969 bytes |
コンパイル時間 | 1,340 ms |
コンパイル使用メモリ | 141,576 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-05-07 19:06:56 |
合計ジャッジ時間 | 2,494 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 4 ms
5,376 KB |
testcase_14 | AC | 6 ms
5,376 KB |
testcase_15 | AC | 7 ms
5,376 KB |
testcase_16 | AC | 8 ms
5,376 KB |
testcase_17 | AC | 8 ms
5,376 KB |
testcase_18 | AC | 7 ms
5,376 KB |
testcase_19 | AC | 8 ms
5,376 KB |
testcase_20 | AC | 4 ms
5,376 KB |
testcase_21 | AC | 3 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 7 ms
5,376 KB |
testcase_24 | AC | 8 ms
5,376 KB |
testcase_25 | AC | 15 ms
5,376 KB |
ソースコード
#include <iostream> #include <algorithm> #include <cstring> #include <list> #include <set> #include <deque> #include <queue> #include <stack> #include <vector> #include <map> #include <chrono> #include <math.h> using namespace std; using lli = long long int; using Vint = std::vector<int>; using Vlli = std::vector<lli>; using Wint = std::vector<Vint>; using Wlli = std::vector<Vlli>; using Vbool = std::vector<bool>; using Wbool = std::vector<Vbool>; using pii = std::pair<int, int>; using pll = std::pair<lli, lli>; template <class T> using Vec = std::vector<T>; constexpr int MOD = 1e9 + 7; constexpr int INFi = 2e9 + 1; constexpr lli INFl = (lli)(9e18) + 1; const std::vector<std::pair<int, int>> DXDY = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; constexpr char BR = '\n'; #define DEBUG(x) std::cerr << #x << " = " << x << '\n'; #define FOR(i, a, b) for(int (i) = (a); (i) < (b); ++(i)) #define FOReq(i, a, b) for(int (i) = (a); (i) <= (b); ++(i)) #define rFOR(i, a, b) for(int (i) = (b); (i) >= (a); --(i)) #define FORstep(i, a, b, step) for(int (i) = (a); i < (b); i += (step)) #define REP(i, n) FOR(i, 0, n) #define rREP(i, n) rFOR(i, 0, (n-1)) #define vREP(ele, vec) for(auto &(ele) : (vec)) #define vREPcopy(ele, vec) for(auto (ele) : (vec)) #define SORT(A) std::sort((A).begin(), (A).end()) #define RSORT(A) std::sort((A).rbegin(), (A).rend()) #define ALL(A) (A).begin(), (A).end() // 座標圧縮 (for vector) : ソートしてから使うのが一般的 ; SORT(A) => COORDINATE_COMPRESSION(A) #define COORDINATE_COMPRESSION(A) (A).erase(unique((A).begin(),(A).end()),(A).end()) template <class T> inline int argmin(std::vector<T> vec){return min_element(vec.begin(), vec.end()) - vec.begin();} template <class T> inline int argmax(std::vector<T> vec){return max_element(vec.begin(), vec.end()) - vec.begin();} template <class S, class T> inline void chmax(S &a, T b){if(a < b) a = b;} template <class S, class T> inline void chmin(S &a, T b){if(a > b) a = b;} template <class T> inline void reverseSORT(Vec<T> &Array){ std::sort(Array.begin(), Array.end(), std::greater<T>()); } inline int BitI(int k){return 1 << k;} inline lli BitL(int k){return 1LL << k;} inline void putsDouble(double d){printf("%.16lf\n", d);} template <class T> inline std::string toString(T n){ if(n == 0) return "0"; std::string res; if(n < 0){n = -n;while(n != 0){res += (char)(n % 10 + '0'); n /= 10;} std::reverse(res.begin(), res.end()); return '-' + res;} while(n != 0){res += (char)(n % 10 + '0'); n /= 10;} std::reverse(res.begin(), res.end()); return res; } namespace MyFunc{ using LLi = long long int; // GCD(a, b) ; a, bの最大公約数を求める関数 inline LLi gcd(LLi a, LLi b){ while(b != 0){ a %= b; std::swap(a, b);} return a; } // LCM(a, b) ; a, bの最小公倍数を求める関数 inline LLi lcm(LLi a, LLi b){ return (a * b) / MyFunc::gcd(a, b);} // 累乗を求める関数 inline LLi power(LLi a, LLi n){ LLi res = 1LL, waiting = a; while(n != 0LL){ if((n & 1LL) != 0LL) res *= waiting; waiting *= waiting; n >>= 1;} return res; } // 累乗の余りを求める関数 inline LLi power_mod(LLi a, LLi n, LLi mod_number___ = 1e9 + 7){ LLi res = 1LL, waiting = a; while(n != 0LL){ if((n & 1LL) != 0LL){ res *= waiting; res %= mod_number___;} waiting *= waiting; waiting %= mod_number___; n >>= 1; } return res; } // Z/pZ上の逆元を求める関数 (フェルマーの小定理) inline LLi inverse_mod(LLi a, LLi mod_number___ = 1e9 + 7){ return MyFunc::power_mod(a, mod_number___-2); } inline LLi inverse_mod_euclid(LLi a, LLi mod_number___ = 1e9+7){ LLi b = mod_number___, u = 1, v = 0; while (b != 0) { LLi t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v);} u %= mod_number___; if (u < 0) u += mod_number___; return u; } // 素数であるかを判定する関数 template <typename Integer_type> inline bool isPrime(Integer_type n){ if(n < 2) return false; if(n == 2) return true; if(n % 2 == 0) return false; for(Integer_type x = 3; x * x <= n; ++++x) if(n % x == 0) return false; return true; } // 素数であるかの真偽表を返す : n ≥ 1 inline std::vector<bool> primeTable(int n){ std::vector<bool> res(n+1, true); res[0] = false; res[1] = false; for(int x = 2; x * x <= n; ++x) if(res[x]){ for(int i = 2 * x; i <= n; i += x){ res[i] = false; } } return std::move(res); } // 素因数分解したベクトルを返す ; {素因数, 指数} template <typename Integer_type> inline std::vector<std::pair<Integer_type, int>> prime_factorization(Integer_type n){ std::vector<std::pair<Integer_type, int>> res(0); if(n <= 0) return std::move(res); // 例外処理 : nが 0 以下 if(n % 2 == 0){ n /= 2; int cnt = 1; while(n % 2 == 0){ n /= 2; cnt++;} res.emplace_back(make_pair(2, cnt)); } Integer_type x = 3; while(x * x <= n){ if(n % x == 0){ n /= x; int cnt = 1; while(n % x == 0){ n /= x; cnt++; } res.emplace_back(make_pair(x, cnt)); } ++++x; } if(n > 1) res.emplace_back(make_pair(n, 1)); return std::move(res); } } // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ constexpr int MAX_SIZE = 200 + 2; constexpr int thisMOD = 1e9+9; char M[MAX_SIZE], D[MAX_SIZE]; int main(void){ scanf("%s%s", M, D); const int nM = strlen(M), nD = strlen(D); // DP_M[i][j][k] := M以下の整数のうち, 上から i 桁まで見て各位の和が j となるもの (kは未満フラグ) // ~> 前後関係から考えて今と次がわかれば十分 DP_M[j] : 和が j となるもの // DP_D[i][j][k] := D以下 同様 const int mxM = 9 * nM, mxD = 9 * nD; Vint DP_M(mxM+1, 0), DP_D(mxD+1, 0); Vint nxtM = DP_M; int ever = 0; REP(i, nM){ // Mに関する i桁目 FOReq(j, 0, mxM) nxtM[j] = 0; // 初期化 int d = M[i] - '0'; // 未満が確定したものは自由に使える FOReq(j, 0, mxM) REP(k, 10){nxtM[j+k] += DP_M[j]; nxtM[j+k] %= thisMOD;} // 未確定のもの REP(k, d) nxtM[ever+k]++; ever += d; std::swap(DP_M, nxtM); } DP_M[ever]++; Vint nxtD = DP_D; ever = 0; REP(i, nD){ FOReq(j, 0, mxD) nxtD[j] = 0; int d = D[i] - '0'; FOReq(j, 0, mxD) REP(k, 10){nxtD[j+k] += DP_D[j]; nxtD[j+k] %= thisMOD;} REP(k, d) nxtD[ever+k]++; ever += d; std::swap(DP_D, nxtD); } DP_D[ever]++; lli res = 0; int mn = (mxM >= mxD) ? mxD : mxM; FOReq(a, 1, mn){ res += (static_cast<lli>(DP_D[a])) * DP_M[a]; res %= thisMOD; } printf("%lld\n", res); return 0; }